

Infections in external ventricular drainage:

Causes, diagnosis, treatment and prevention

Roger Bayston MMedSci MSc PhD FRCPath Professor of Surgical Infection School of Medicine University of Nottingham, UK

Incidence of infection in EVD

Around 10% Holloway et al **Berger et al** Wong et al Zabramski et al Schade et al Moon et al Nottingham

1996	10.4%
2000	3.9%
2002	7.8%
2003	9.4%
2006	9.6%
2007	8.6%
2003-6	7-9%
2006-10	2-3%

Incidence of infection in EVD

Sometimes higher than 10%		
Leverstein v-Hall et al	2004	17%
Korinek et al	2005	12%
Hayhurst et al	2007	27%
Dasic et al	2009	27%
Keong et al	2010	21%

What are the reasons for this? Possibly different diagnostic criteria or different patient demography etc

Causative bacteria

- Mainly staphylococci
- Mainly CoNS (S epidermidis)
- Some S aureus, occasionally MRSA
- Gram negatives eg E coli, Klebsiella, Pseudomonas
- Acinetobacter baumannii (MDR = multiresistant)
 20-27% mortality (Krol et al J Hosp Infect 2009)
- Occasionally Candida

75% of infections are due to Gram positive bacteria

Diagnosis of EVD- associated ventriculitis

- Patients often already ill (SAH, trauma etc): impaired consciousness, fever, etc
- CSF picture unclear: blood, white blood cells, glucose, protein etc all unreliable in bleeds or trauma
- CSF culture: is it a contaminant?

Mayhall et al NEJM 310: 553-9, 1984 Diagnostic criteria

- CSF +ve culture
- Fever >38°C: ≥48hr before or after CSF +ve culture, persisting ≥3 days
- CSF WBC ≥11/mm³, 50% polymorphs
 ≥48hr before or after CSF +ve culture, persisting ≥3 days
- Peripheral blood WBC up ≥48hr before or after CSF +ve culture, persisting ≥3 days

Mayhall et al 1984 What are the most important criteria?

- CSF +ve culture
- Fever >38°C: ≥48hr before or after CSF +ve culture, persisting ≥3 days
- CSF WBC ≥11/mm³, 50% polymorphs
 ≥48hr before or after CSF +ve culture, persisting ≥3 days p= 0.0001
 But 4 of 19 infections had normal WBC!
- Peripheral blood WBC up ≥48hr before or after CSF +ve culture, persisting ≥3 days

Diagnostic criteria are still being debated but a positive CSF culture must be a part of the requirement

Changes over 24-48hrs might be more indicative than snapshot data Does it matter if the catheter is colonised (positive CSF culture) but the CSF shows no white blood cells?

Significance of drain colonisation

Pfisterer et al J. Neurol. Neurosurg. Psychiatr 74;929-932 2003.

- Increasing CSF WBC led to "suspicion of bacteriological drainage contamination" or "incipient catheter contamination"
- They considered these to be infection and treated them as such
- Drains were sampled daily (is this advisable?)

Daily CSF sampling: does it lead to earlier diagnosis of infection?

<u>Hader & Steinbok Neurosurg:46 (5):</u> <u>1149-1155,2000:</u>

- Routine daily CSF sampling did not help in early diagnosis: recommended only if symptoms or suspicion of infection
- Risk of introducing infection
- More "contaminants" isolated; What action to be taken?

How to distinguish contaminants?

- <u>Lozier</u>: Single CSF positive culture / gram stain, no other changes = contaminant
 (but could indicate colonization of the catheter- is this important?)
- Hader & Steinbok 2000:

Culture +ve, Gram film –ve = contaminant Culture +ve on two days, same organism, Gram film +ve = infection

- Harrop: Two +ve CSF cultures (same organism) plus raised wbc
- Hader and Steinbok: importance of the Gram stain!!

Diagnosis of CSF infection in EVD

Clinical signs / symptoms?

Laboratory measurements?

Which do we follow?

Pfisterer et al J. Neurol. Neurosurg. Psychiatr 74;929-932 2003:

- Infection rate 16.2%
- Blood WBC, CSF glucose or protein, serum CRP, other inflammatory markers not reliable.
- Only Cell Index correlated with positive cultures

Pfausler cell index

Cell index: WBC (CSF) /RBC (CSF) WBC (Blood)/ RBC (Blood)

Pfausler et al, Acta Neurochir 146, 477-81, 2004

Pfausler cell index

Fig. 1. Time course of mean CI (±SD) of 7 patients with EVD associated ventriculitis (filled circles) compared to mean CI (±SD) of 6 patients without EVD associated ventriculitis (triangulars)

Round up and recommended way forward

Symptoms:

- <u>change</u> in mental status (not just a snapshot)
- <u>New</u> fever (or rising fever)

- CSF +ve gram stain plus +ve culture
- Repeat culture if +ve with -ve Gram film or if change in symptoms or WBC etc

Recommendations for discussion

- If clinical suspicion of infection or new fever, etc: CSF sample
- Ask for Gram film stat and semi-quantitative culture
- If decision is catheter colonisation, remove and treat (1 dose Abx)
- If decision is ventriculitis, remove and treat
- If decision is sample contamination, observe carefully! (sample contaminated might mean CSF contaminated!)

Sources of infection in EVD

- Risk at insertion
- Continued risk during use
- **Contamination of catheter lumen from:**
- Disconnections
- CSF sampling
- Patient's skin, staff fingers, environment
- **Contamination of skin track from patient's skin**
- Schade et al 2005:

If EVD is in for >15 days, the risk of infection is seven times greater than if <15 days

Strategies for prevention Changes in surgical practice: "bundling"

> Putting into practice "common sense" measures, none of which alone necessarily has RCT evidence

Similar principles to those in CSF shunting

Importance of protocols

Korinek et al Acta Neurochir 147:39–46,2005:

- "...the only statistically significant risk factors for infection were CSF leak, and protocol violation.
- Patients with a protocol violation score of 0 or 1 (no violations) had no infections P<0.0001
- All infections were in those with scores >1 5

Prophylactic antibiotics for EVD

Three options:

- None
- At insertion only
- Throughout use of EVD
- And a fourth: antibiotics for infections elsewhere

Prophylactic antibiotics for EVD <u>Risks of prophylactic antibiotics</u>

- Drug reactions: eg nausea, anaphylaxis
- Promotion of antibiotic resistance eg MRSA
- Selection of intrinsically resistant organisms eg Pseudomonas, Candida
- Increased risk of C difficile infection

Prophylactic antibiotics

Alleyne et al Neurosurg 47,1124–1129, 2000:

Results

Two Groups:

- Group A, antibiotics at insertion and during EVD
- Group B, antibiotics only at insertion
- No difference in infection rate
- More Gram negative infections in Group A
- All Acinetobacter and Pseudomonas were in Group A
- In Group B, savings were \$80k each year
- Suggests that one dose only (Group B) is preferrable

Prophylactic antibiotics

Korinek et al 2005:

Reduced antibiotic use (80% to 65%) associated with reduced infection rate 10% to 4.6% p=0.05
Non-use of antibiotic prophylaxis, even at insertion only, was <u>not</u> a risk factor for infection
But 50% more resistant bacteria in antibiotics group

- No clear evidence of efficacy for antibiotics
- Current infection rates in USA (8.8%) are with antibiotics (Lozier et al 2000)

Antimicrobial EVD catheters

Conflict of interest: Author is named inventor of Bactiseal and receives speaker fees from Codman

Antimicrobial EVD catheter (Bactiseal)

- Impregnated (NOT COATED) with rifampicin and clindamycin
- ~50 days antibacterial protection against colonization

(Bayston, Ashraf and Bhundia J Antimicrob Chemother 53, 778-782, 2004)

 This should be adequate duration cover for all EVDs

Limitations of Bactiseal

 Does not protect against Gram negative bacteria (usually ≤ 25%)

Bactiseal EVD Clinical trials?

 <u>Muttaiyah et al J Clin Neurosci 17 296–298,2010</u>:
 EVD infection reduced 15% to 5% (p=0.06) (60 vs 60; historical controls)

In sequential studies, how much of the reduction is due to antimicrobial catheters and how much to the "Hawthorne effect"?

Bactiseal vs prophylactic antibiotics

Wong et al J Neurol Neurosurg Psychiatr 2010;81:1064-1067

 184 patients: Bactiseal + antibiotics at insertion only Plain catheters + longterm antibiotics

- Bactiseal 1% infection
- Plain + AB 3% infection (p=0.282)
- So, low infection rate in both cases

Bactiseal vs prophylactic antibiotics

Wong et al 2010: Adverse effects

Over-use of antibiotics is responsible for adverse effects and increasing resistance. C difficile disease is a serious problem worldwide and can require colectomy for survival.

Clostridium difficile infection:

- Bactiseal: 0
- Plain catheters + longterm antibiotics 3

(1 case colectomy)

Therefore, more systemic antibiotics leads to more resistance and more adverse events

Korinek showed that using no antibiotics at all was not a risk factor for infection....

Alternative antimicrobial catheters for EVD

- Hydrogel coated catheter (can be soaked in antibiotic solution: Kaufmann et al Can J Neurol Sci 2004; 31: 506-510)
- Prospective RCT, 3 centres. Bacitracin soaking.
- <u>158 patients: 78 controls</u>, <u>80 Bioglide</u>
 Infected <u>9%</u> 7.5% (p>0.05)

No significant benefit (wrong antibiotic, or too short a release duration?)

Alternative antimicrobial catheters for EVD

- Ventriclear: contains rifampicin and minocycline: (Zabramski et al J Neurosurg 2003; 98: 725-730)
- Prospective RCT 6 centres
- <u>288 patients: 139 controls, 149 Ventriclear</u>
 Colonized 37% 18% (p<0.0012)
 CSF +ve 9.4% 1.3% (p=0.002)

Likely to reduce EVD infection

Alternative antimicrobial catheters for EVD

- Silver processed catheter (Silverline)
 <u>Fichtner et al J Neurosurg 112:840–846,2010</u>
- Retrospective review, 164 patients Control Arm 90: infn rate 4.7% Silver EVD Arm 74: infn rate 2.7%

Not statistically significant p= 0.55

Alternative antimicrobial catheters for EVD

Silver processed catheter (Silverline)

Keong et al J Neurol Neurosurg Psychiatr 2010;81:1064-1067

• Double blind RCT, 2 centres

278 patients: 140 controls, 138 Silverline

CSF +ve 21.4% 12.3% (p=0.0427)

- Significant reduction in EVD infection but infection rate remains high at 12.3%.
- See the reported EVD infection rates (slides 2-3)

Conclusions

- Diagnosis of EVD ventriculitis is made difficult by the underlying pathology
- Positive CSF culture remains the main criterion
- Infection rates vary considerably in reports
- Understanding of the aetiology is key to prevention
- Rates can be reduced by protocol adoption
- Antimicrobial EVD catheters reduce infection rates and adverse events
- Prolonged antibiotic prophylaxis is of no benefit and leads to complications