Oncological and functional results in surgery for insular diffuse low-grade gliomas

Hugues Duffau, M.D., Ph.D.
Professor & Chairman
Department of Neurosurgery
Director
Team 4, INSERM U1051, Institute for Neuroscience
Gui de Chauliac Hospital, Montpellier University Medical Center, France
Growing Tumor (4 mm / year) : NOT STABLE!!!!!
- invading the cortico-subcortical functional structures
- revealed by seizures (90%)
- young patients with no/slight deficit

« pre-canecrous » tumor
- NOT benign!!!!!

Anaplastic transformation
- Around 50% within 5 to 7 years following the first symptoms
 - Deficit
 - Death (median survival: 5-10 years)

Mandonnet, Ann Neurol 2003
Duffau, J Neuroncol 2006
IMPACT OF SURGERY: SURVIVAL IN RELATION TO THE EXTENT OF RESECTION (n = 1091)

N = 1091
p < 0.0001

French Glioma Network, J Neurosurg 2012
IMPACT OF RE-OPERATION
EVEN WITHIN ELOQUENT AREAS (n = 108)

Prognostic factors (multivariate analysis)
- postop volume
- location
- age < 54 years
- reoperation +++

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 20 yrs</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>20-54 yrs</td>
<td>0.0006</td>
<td>0.0025</td>
</tr>
<tr>
<td>> 54 yrs</td>
<td>2.661</td>
<td>1.410-5.020</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>0.2306</td>
<td>0.1115</td>
</tr>
<tr>
<td>Temporal</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Other sites</td>
<td>2.427</td>
<td>1.729-3.405</td>
</tr>
<tr>
<td>Tumoral volume</td>
<td><0.0001</td>
<td>0.0004</td>
</tr>
<tr>
<td>Subsequent chemotherapy</td>
<td>0.0147</td>
<td>NS</td>
</tr>
<tr>
<td>Subsequent resection</td>
<td>0.0048</td>
<td>0.0303</td>
</tr>
</tbody>
</table>

Surgical resection represents the first treatment option, with the goal to maximally resect the tumor mass whenever possible, whilst minimizing the post-operative morbidity.
Insular DLGGs are very frequent: 33% +++
versus
Occipital and prefrontal DLGGs: 7%

Duffau and Capelle, Cancer 2004; Parisot, Duffau, Chemouny and Paragios, MICCAI 2011
RATIONALE IN INSULAR LOW-GRADE GLIOMAS

◆ Surgery: two antagonist goals
 – Maximal glioma resection
 – BUT
 ● With no permanent deficit!
 ● or even with an improvement of the quality of life (e.g. relief of intractable seizures)
PARADIGMATIC SHIFT

- Early surgery (NO biopsy!)
 - At diagnosis
 - Before any deficit

- Surgery according to functional boundaries and NOT according to « oncological boundaries » - do not exist!
 - Study of the individual functional anatomy
 - Brain connectivity and plasticity: towards hodotopy

- Aim: optimization of BOTH survival and quality of life

Duffau, Neurosurg Focus 2010, Duffau, Adv Tech Stand Neurosurg 2012
WHY NOT TO OPERATE?

THE FUNCTIONAL RISK OF SURGERY

SOLUTION: MAPPING TECHNIQUES !!!!
LIMITS OF RESECTION: CORTICAL AND SUBCORTICAL

FUNCTIONAL STRUCTURES, WITH NO MARGIN

FUNCTIONAL-MAPPED GUIDED RESECTION

BUT NOT IMAGE-GUIDED RESECTION !!!!!!

Duffau et al, J Neurosurg 2008; Gil Robles and Duffau, Neurosurg Focus 2010
THE INSULAR LOBE

- Fifth lobe (Reil’s Island)
- Buried within the sylvian fissure
- Not studied for a long time - deep location
- Part of the paralimbic system with the orbito-frontal and temporo-polar areas
- Strong connections with the other brain cortical and subcortical structures

Duffau et al., Neurosurgery 2000
ANATOMY AND CYTOARCHITECTONY

3 anterior short gyri
2 posterior long gyri
Cytoarchitectonical gradient

Martino, Vergani, Gil Robles and Duffau, Neurosurgery 2010
FUNCTIONAL ROLE

- Interface between the limbic system and the neocortex

- Plurimodal area
 - Visceral sensorimotor processing
 - Sympathetic control of cardiovascular tone
 - Somatosensory function (including pain)
 - Motor function
 - Volitional swallowing
 - Olfacto-gustatory function
 - Auditivo-vestibular function
 - Emotion
 - Language and cognition

Duffau, J Neurosurg 2009
PREOPERATIVE NEUROPSYCHOLOGICAL ASSESSMENT

NOT A LUXURY!

- Cognitive deficit despite a « normal life » in > 80% of cases
 - Working memory
 - Attention
 - Executive functions (increase reaction time)
 - Emotion
 - Social cognition

Teixidor et al., J Neurooncol 2006;
Moritz-Gasser et al., J Neurooncol 2012
Klein, Duffau and de Witt, J Neurooncol 2012
SURGERY

BRAIN ANATOMY IS CRUCIAL BUT NOT ENOUGH

Subcortical pathways

Superior longitudinal fasciculus

Inferior fronto-occipital fasciculus

Martino, Brogna, Gil Robles, Vergani and Duffau, Cortex 2010
PREOPERATIVE fMRI: STUDY OF THE VARIOUS PATTERNS OF FUNCTIONAL REORGANIZATION

Intralesional

Perilesional

Contralesional

BUT PREOPERATIVE FUNCTIONAL NEUROIMAGING IS LIMITED !!!!

◆ Advantages
 – Non-invasive
 – Cortical mapping of the whole brain
 » Hemispheric language lateralization

◆ Limitations
 – No differentiation critical vs compensable areas +++
 – 66% of sensitivity for language: neurovascular decoupling ?
 – NO VALUE at the individual scale!

Duffau, Adv Tech Neurosurg 2012
DIFFUSION TENSOR IMAGING: TRACTOGRAPHY OF THE ANATOMIC CONNECTIVITY IS LIMITED!!!
INTRAOPERATIVE AWAKE MAPPING
DIRECT ELECTRICAL STIMULATION

◆ Advantages
 – Detection of ESSENTIAL areas: « epicenters »
 – Cortical AND subcortical mapping
 – Accurate (5 mm)
 – Reliable
 – On-line
 – Safe

Crucial role of speech therapist in the OR

Duffau et al, J Neurosurg 2003
INTRAOPERATIVE ON-LINE COGNITIVE MONITORING

- Tasks continuously performed throughout the resection ++
- Necessity of speech therapist in the operative room ++
 - Detail of the language disorders elicited by stimulation
 - Cortico-subcortical anatomo-functional correlations
 - On-line
- Tasks
 - Counting
 - Object naming
 - Reading
 - Comprehension / Memory
 - Writing / Calculation ...

Duffau et al, J Neurosurg 2008
SELECTION OF INTRAOPERATIVE TASKS

◆ Patient
 – Job, hobby, habits, social activity (e.g. multilingualism…)

◆ Preoperative clinical and neuropsychological assessment
 – Neurological or cognitive deficit?
 – Handedness

◆ Glioma location
 – In relation to the «classical» anatomical landmarks
 – On the lights of functional neuroimaging
 » Hemispheric lateralization (language)?
 » Functional network?

Duffau, Neurosurgery 2010
No neuronavigation in insular surgery due to brain shift

Duffau et al, J Neurosurg 2008
SURGICAL APPROACH

Opening of the sylvian fissure is more dangerous than resection of frontal and/or temporal operculae after individual cortical mapping: no vascular problems thanks to subpial dissection +++

Duffau et al., Clin Neurol Neurosurg 2006
REMOVAL OF LEFT INSULAR GLIOMAS THROUGH THE OPERCULUM NOT INVADER BY THE TUMOR

Duffau et al, Neurosurg Focus 2009
MAPPING OF THE INDIVIDUAL FUNCTIONAL ORGANIZATION OF THE INSULAR CORTEX

Insular mapping: role of left anterior insula in planning of speech (8%)

Duffau and Fontaine, Acta Neurochir 2005
DEEP BOUNDARIES OF RESECTION

SUBCORTICAL SENSORI-MOTOR PATHWAYS

Duffau, J Neurosurg 2009
DEEP BOUNDARIES OF RESECTION: LANGUAGE
DORSAL PHONOLOGICAL STREAM

Superior longitudinal fascicle

Duffau et al, Brain 2002; Duffau et al., NeuroReport 2004; Maldonado et al, Brain Struct Funct 2011
DEEP BOUNDARIES OF RESECTION: LANGUAGE

VENTRAL SEMANTIC STREAM

Inferior fronto-occipital fascicle

Duffau et al, Brain 2005; Martino et al., J Anat 2011
SUBCORTICAL PATHWAYS SUBSERVING VISUO-VESTIBULO-SPATIAL AWARENESS

Thiébaut, Urbanski, Duffau et al, Science 2005

Spena et al., Neuroreport 2006
RESECTION OF CLAUSTRUM
POSSIBLE FUNCTIONAL COMPENSATION

Duffau et al, J Neurooncol 2007
RESECTION OF RIGHT STRIATUM WHEN INVADED
POSSIBLE FUNCTIONAL COMPENSATION

Be careful: perforating arteries !!!

Duffau et al, J Neurosurg 2002
RESULTS
PATIENTS

A personal series of 144 patients with insular LGG (1997-2012)

- 74 M / 70 F (mean age of 36 years)
- All right-handed except 6
- Revealed by seizures in all cases
- 37% pharmaco-resistant epilepsy
- Neurological examination
 - Normal in 134 patients (KPS 90 or 100)
 - Mild dysarthria in 10 patients (KPS 80)

Duffau, J Neurosurg 2009
PREOPERATIVE MRI: GLIOMA LOCATIONS
(70 RIGHT and 74 LEFT LGG)

17% pure insular LGG
83% paralimbic LGG
INTRAOPERATIVE FUNCTIONAL MAPPING

◆ 49 patients operated under general anesthesia (first period)
 – No response during stimulation of the insular cortex
 – Pyramidal fibers systematically detected and preserved

◆ 95 patients operated on whilst awake (second period)
 – Dysarthria induced by insular stimulation in 8 cases
 – No other functional disturbance elicited during cortical mapping
 – Language pathways/deep grey nuclei detected and preserved in all cases

Opercual resection in 130 cases
POST-OPERATIVE FUNCTIONAL RESULTS

- Postoperative rehabilitation adapted to each patient
- Delayed postsurgical results
 - 142 patients recovered a normal examination
 - 40 improved relative to their preoperative status
 - KPS 90 or 100 in 142/144 cases
 - Normal socio-professional life in 142 cases
 - 2 permanent hemiparesis due to a deep stroke (0 in awake patients+++)
- 98.6% of favorable functional results in insular surgery

Duffau, J Neurosurg 2009; Duffau et al., Neurosurgical Focus 2009
POST-OPERATIVE EPILEPTOLOGICAL RESULTS

- Relief of intractable epilepsy
 - 81% of patients in Engel Class I
 - With dramatic improvement of the quality of life
 - But still under antiepileptic drugs (except in 20% of cases)

Duffau et al, Acta Neurochir 2002
IMPACT OF RESECTION OF THE HIPPOCAMPUS NOT INVADED BY THE TUMOR IN PARALIMBIC LGG

15 patients with a (fronto-)temporo-insular LGG eliciting intractable epilepsy

LGG resection with no hippocampectomy
N = 8; 4 Engel’s II and 4 Engel’s III

LGG resection with hippocampectomy
N = 7; 7 Engel’s I

p = 0.0001

Ghareeb and Duffau, J Neurosurg 2012
RESULTS : EXTENT OF RESECTION

- Total or subtotal in 82% of patients
 - Whatever the Type
 - Verified on MRI +++

- Partial in 18% of patients

Pure insular

Fronto-temporo-insular
LIMITATIONS

Anterior perforating substance

Left dominant postero-superior insula
Surgical approach through the parietal operculum (example of left-hander)
RESULTS : RE-OPERATION AFTER TUMOR REGROWTH

- Twenty patients underwent a second surgery
- Four patients underwent a third surgery
- With no additional permanent deficit
- With improvement of the extent of resection in all cases
FOLLOW-UP

- Median FU: 74 (3-148) months since the first surgery
- Median FU: 90 (6-260) months since the first symptom
- Ten patients died (15%)
- 85% of patients are still alive

Survival after the first surgery

Duffau, J Neurosurg 2009
CONCLUSIONS

SURGERY FOR INSULAR GLIOMAS

◆ Integration of new concepts in the surgical strategy
 – Better knowledge of the role of the insular lobe
 – Study of the individual functional anatomy

◆ Optimization of Benefit/Risk Ratio of surgery
 – Extension of surgical indications within the insula, since a functional compensation is possible
 – Improvement of the extent of resection
 – Minimization of the risk of permanent deficit (1.5%)
 – Improvement of the quality of life in intractable epilepsy
LIMITATION: SUBCORTICAL CONNECTIVITY!!

« MINIMAL COMMON BRAIN »

Mandonnet et al., Neurooncology 2006; Duffau, Neurosci Res 2009; Ius et al., Neuroimage 2011
PERSPECTIVES : NEW ANATOMIC STUDIES
OF THE TEMPORAL STEM WITH DISSECTION AND DTI

Martino et al., Neurosurgery 2010; De Benedictis, Sarubbo and Duffau, J Neurosurg 2012
PERSPECTIVES: TOWARDS A KINETIC CLASSIFICATION
BASED ON WHITE MATTER INVASION PATTERNS

Mandonnet et al, J Neurooncol 2007; Duffau et al. JNNP 2008; Martino et al., Cortex 2010
PERSPECTIVES : PREDICTION OF THE EXTENSION OF INSULAR LOW-GRADE GLIOMAS

◆ Use of the DTI

Calculation of a Cellular Tensor Diffusion

Jbabdi et al., MRM 2006
PERSPECTIVES: TOWARDS A BETTER UNDERSTANDING
OF THE MOLECULAR BIOLOGY OF INSULAR LGG

◆ Molecular analysis in the 47 last patients
 – only 15% of 1p19q co-deletion
 – IDH1/2 mutation in all pure insular LGG
 – only 55% mutated in paralimbic LGG (p=0.008)

◆ Markor of worse prognosis in paralimbic LGG?
◆ Markor of a lower chemosensitivity?
◆ Supporting a more surgical attitude / Multiple resections

Goze et al, J Neurooncol 2008; Goze et al., J Neurosurg, in press
TAKE HOME MESSAGE

Although the knowledge of the gray and white matter anatomy is mandatory, it is NOT ENOUGH. Functional aspects are CRUCIAL!!!