Pediatric Head Injury: *Part I – Basic Principles*

Jogi V. Pattisapu, MD FAAP FACS

Emeritus Medical Director Arnold Palmer Medical Center College of Medicine University of Central Florida Orlando FL USA

JogiP@mail.UCF.edu

- Second most common neoplasm
- Most common solid malignancy
- Derive from intrinsic/parenchymal
 elements of CNS
- Majority are in midline
- Classify by site or histology

 Trauma leading cause of death in children. More deaths than all other diseases combined! • Often occurs after-hours, requires intense and immediate interventions.

- 500,000 admissions per year
- 3000 4000 deaths per year
- 20,000 prolonged hospitalization
- Decreased M/M in recent
 - decades.
- Better understanding of pathophysiology

• 500,000 admissions per year • 3000 - 4000 deaths per year 20,000 prolonged hospitalization • Decreased M/M in recent decades. Better understanding of pathophysiology

Algorithim

Derivation of the children's head injury algorithm for the prediction of important clinical events decision rule for head injury in children

Dunning J, Daly JP, Lomas J-P, et al on behalf of the children's head injury algorithm for the prediction of important clinical events (CHALICE) study group

Sensitivity 98%. Scan rate 14%

Arch Dis Child 2006; 91:885-891

The children's head injury algorithm for the prediction of important clinical events rule

A computed tomography scan is required if any of the following criteria are present.

- History
- Witnessed loss of consciousness of >5 min duration
- History of amnesia (either antegrade or retrograde) of >5 min duration
- Abnormal drowsiness (defined as drowsiness in excess of that expected by the examining doctor)
- ⇒3 vomits after head injury (a vomit is defined as a single discrete episode of vomiting)
- Suspicion of non-accidental injury (NAJ, defined as any suspicion of NAJ by the examining doctor)
- Seizure after head injury in a patient who has no history of epilepsy
- Examination
- Glasgow Coma Score (GCS)<14, or GCS<15 if <1 year old
- Suspicion of penetrating or depressed skull injury or tense fontanelle
- Signs of a basal skull fracture (defined as evidence of blood or cerebrospinal fluid from ear or nose, panda eyes, Battles sign, haemotympanum, facial crepitus or serious facial injury)
- Positive focal neurology (defined as any focal neurology, including motor, sensory, coordination or reflex abnormality)
- Presence of bruise, swelling or laceration >5 cm if <1 year old
- Mechanism
- High-speed road traffic accident either as pedestrian, cyclist or occupant (defined as accident with speed >40 m/h)
- Fall of >3 m in height
- High-speed injury from a projectile or an object

If none of the above variables are present, the patient is at low risk of intracranial pathology.

- Falls < 10 y.o.
- MVA > 10 y.o.
- NAT < 2 y.o.
- **Sports > 4 y.o.**
- 50% with associated injuries
- GCS correlates with outcomes
- 80% mild, 10% mod., 10% severe

- Brain 15% at birth, 3% as adult
- Skull / brain relationships vary
- Increased water content in children
- Diffuse injury more common
- Less operative trauma
- Plasticity of neurologic return

Monro-Kellie Doctrine

•
$$\mathbf{V}_{blood} + \mathbf{V}_{CSF} + \mathbf{V}_{brain} = \mathbf{V}_{total}$$

- Intracranial space is limited!
- Hypothesis proposed in 1783
- Cushing popularized concept in 1902
- CPP = MAP ICP
- ~ 50 mm Hg adequate in children
- Ultimate goal = adequate CPP

Cerebral Blood Flow

- Adult human brain weighs 1500gm
- 2% body wt. & receives 15% C.O.
- Measured by xenon and TCD
- Need continuos O2 & glucose supply
- Cerebral edema causes CBF
- Increased with loss of autoregulation

Effect of reduced cerebral blood flow on cerebral function and cellular homeostasis

<u>Cerebral Blood Flow</u>

Glascow Coma Scale

Glasgow Coma Scale	Modified Coma Scale for Infants	Point Value
Eye opening		
Spontaneous	Spontaneous	4
To speech	To speech	3
To pain	To pain	2
None	None	1
Verbal		
Oriented	Coos, babbles	5
Confused	Irritable	4
Inappropriate words	Cries to pain	3
Grunting	Moans to pain	2
None	None	1
Motor		
Follows commands	Normal spontaneous movements	6
Localizes pain	Withdraws to touch	5
Withdraws to pain	Withdraws to pain	4
Abnormal flexion	Abnormal flexion	3
Abnormal extension	Abnormal extension	2
Flaccid	Flaccid	1

Associated Injuries

50% BTAT
3-5% spine
15-20% ortho
Increase severity

5 - 15% of mild head injuries

- 30 70% in child abuse cases
- History usually reliable
- Often with focal scalp injury
- Increases suspicion of brain inv.
- Usually require observation

...takes much force to fracture a skull!

Non-accidental Trauma

Interhemispheric falx hemmorhage
Sub-dural hemorrhage
Large, non-acute extra-axial fluid collection
Basal ganglia edema

p<0.05 for above per Hymel et al, Pediatr Radiol; (1997 Sep) v27 n9 p743-7.

Cerebral Concussion

- Most frequent head injury
- Loss of neurologic function
- Temporary paralysis of function
- Altered cerebral blood flow
- No structural abnormality
- Outcome uniformly excellent

Cerebral Concussion

- Variable level of consciousness
- Loss of tone, reflexes, resp. control
- Pupil abn., cortical blindness
- Pallor, heart rate abn., vomiting
- Lethargy, slurred speech
- Confusion, amnesia of events

Admission Criteria

- Decreasing consciousness
- Persistent confusion / lethargy
- Excessive headache / vomiting
- Uncertain history of trauma
- Focal neurologic signs
- Seizures / skull fracture

Observation

OCTOPUS – observation or computed tomography of mild head injury in Sweden: a randomized clinical trial concerning effects and costs

Table 3 Death and complications according to final evaluation by blinded external and internal reviewers

	Computed tomography (n=1316)	Observation in hospital (n=1286)	Total
Deaths:			
Caused by head injury	1	1	2
Possibly related to head injury	1	0	1
Other causes	2	4	6
Total	4	5	9
Admission to ICU/neurosurgical ward during acute phase	2	3	5
Neurosurgical operations:			
-During acute phase	0	0	0
During three month follow-up	1	3	4
Readmissions:			
Readmission due to symptoms of head injury	1	1	2
ICU=intensive care unit.			

Table 5 Cost per patient (€) for computed tomography v observation in hospital (€)

	Computed tomography	Observation in hospital	P value
Mean cost during acute stage and complications (1st and 3rd quartile)	461 (354-490)	677 (543-688)	<0.001
Mean cost during follow-up	257	237	
Total	718	914	<0.001

Gierjersta JL, et al: BMJ 2006; 465 and 469

Infants - recommendations

• High Risk: CT scan

Skull fracture, seizure, bulging fontanel, LOC > 1 min, decrecased mental status, focal neurologic deficit

Intermediate Risk: CT scan

LOC < 1 min, nonacute skull fx, vomiting, caretaker concern, High energy mechanism, large scalp hematoma, unwitnessed injury

• Low Risk: Observe and Discharge Low energy mechanism, (fall < 3 ft), asymptomatic, Over 2 hours from injury, older age (> 12 mo)

Schutzman SA, et al: Pediatrics (2001) 107: 983-993

Post-concussive Syndrome

- Persistent headaches
- Dizziness / lightheadedness
- Difficulty with concentration
- Irritability, stress intolerance
- Often in intelligent patients
- Normal neurologic exam

Cerebral Contusion

- Increase CBF and ICP
- Higher incidence with GCS
- ~20% if cerebral contusion
- Immediate seizures not recurrent
- ? Prophylactic anticonvulsant use
- Treat for 2-4 weeks??

Diffuse Axonal Injury

Diffuse Axonal Injury

Some evidence that axons are not initially disrupted only swollen

Diffuse Axonal Injury

Diffuse cerebral swelling in 2-5 X more common in children than in adults, possibly due to ischemia
Zwienenburg Muizelaar J Neurotrauma 16(10):937-43
In severe head injury, autoregulation is intact 59% of the time, and dysfunctional 41%
Muizelaar, et al J Neurosurg 71:72-76

If autoregulation is intact, ICP varies inversely with MAP, directly if autoregulation is not intact

- Bouma et al J Neurosurg 77:15-19

Pediatric Head Injury: Part II - Current management

Jogi V. Pattisapu, MD FAAP FACS

Emeritus Medical Director Arnold Palmer Medical Center College of Medicine University of Central Florida Orlando FL USA

JogiP@mail.UCF.edu

Hyperventilation

- Immediate in CSF pH
- 1 torr PCO₂ **GBF** by ~ 3%
- May try mild hypervent. in kids
- Prophylactic use ineffective
- Recent data do not support use
- Appropriate in severe cases of impending herniation

Head Position

- Great controversy!
- Modest ICP improvement
- Improves jugular return
- 30 45 degrees optimal
- Avoid during hypotension
- ? A-line tranducer position

- Immediate | in blood viscosity
- Improves blood flow
- 1-3 ml/Kg 3% NaCl
- 0.25 2 gm/kg dose mannitol
- Hypertonic saline effective
- Primary effect by dehydration
- BBB must be intact
- Monitor serum osmolality (~300)

- Initially suggested by Phelps in 1897
- Mild hypothermia to 32 34⁰
- 5 10% CMRO₂ change per ⁰C
- Hyperthermia injures BBB
- 2 randomized trials in adults
- No consistent data in children

- Reduces cerebral metabolism (7% / °C heat)
- Currently under trial for refractory ICP control
- Moderate cooling 32-34 degrees can decrease the severity of increased ICP, but not the average ICP in head injured children without coagulopathy
- There was no difference in outcome
 - Biswas et al Crit Care Med 2002 30(12):2742-51
- CoolKids trial underway
- ? Inc. mortality w/ rapid rewarming (Hutchinson, et al, NEJM 2008)
Barbiturate Coma

Cardiovascular depressant (watch your BP!) Lowers cerebral metabolic rate and ?vasoconstricts Burst surpression goal on EEG

Barbiturates

- No controlled trials in children
- Decrease CMRO₂
- | CNS lactate & glutamate
- EEG burst suppression or levels
- ? [†] Survival, but poor outcome
- Arterial hypotension common
- Recent success in small series

Barbiturates

- Suppress brain metabolism, up to 50%
 - Piatt, Schiff Neurosurgery 1984 15:427-44
- Alters cerebral vascular tone
- Associated reduction of coupled CBF, reduces cerebral blood volume and therefore ICP
 - Bolus iv delivery 10mg/kg, over 30 min
 - Then 5mg/kg/hr for 3 hours
 - Hourly delivery 1-5mg/kg
 - Usually dosed to burst suppression on EEG
 - May also dose by levels, but not recommended
 - Kassell et al Neurosurgery 1980 7:598-603

Barbiturate Coma

- Prophylactic use is unsupported
- May develop decreased jugular venous saturation of <45%, associated with poor outcome
 - Cruz J Neurosurg 1996 85:758-61
- Myocardial suppression and hypotension requiring inotropic infusion
 - Adelson et al Pediatr Crit Care Med 2003 4(3):S49-52
- Role in refractory ICP elevation unclear
 - Pittman et al Pediatr Clin N Am 1980 27:715-727

- Initially described by Cushing -1905
- Some studies suggested edema
- Increased use recently (selective)
- Better outcomes in young patients
- Second tier therapy with barb. coma

Some recent studies: improved functional outcomes, less mortality (JNS Jaganathan 2007; Cochrane Database, 2006)

- Bifrontal craniectomy was effective in resolving refractory intracranial hypertension in 44% of patient
- (Polin *et al Neurosurgery* 1997 41(1):84-94)
- Pilot study showed efficacy in all 6 patients with refractory elevated ICP
 - (Ruf et al Crit Care 2003 7(6):R133-8)
- Craniectomy, primary or delayed showed positive influence on outcome and survival on pediatric subpopulation (16)
 - (Messing-Junger et al Zentralbl Neurochir 2003 64:171-7)

• COMPLICATIONS ----

- Brain shift form overdrainage
- Bone flap storage in children is challenging
 - Frozen flap
 - Subcutaneous space is small
 - Demineralization?
- Bone resorption in children could be as high as 50% (Grant, Ellenbogen, *et al* JNS:Spine 2004)

Lumbar Drainage

- Controversial technique to treat refractory high ICP when ventriculostomy and medical management is ineffective
 - Levy et al J Neurosurg 1995 83(3):453-60
 - Munch et al Crit Care Med 2001 29(5)976-81
- Can lead to tonsillar herniation
 - 2 patients, Munch *et al Crit Care Med* 2001 29(5)976-81
 - Baldwin, Rekate *Pediatr Neurosurg* 1991-2 17(3): 115-20

Controversies in Management

- Steroids
- Hemodilution
- Hypoglycemia

- Prophylactic anticonvulsants
- Controlled arterial hypertension
- Liquid ventilation / ECMO

Prevention

- Almost always forgotten!!!
- Simple common sense
- Use available resources
- Child seat enforcement
- Occupant Protection Program
- ThinkFirst program
- Safe Kids programs

Outcomes

- Good = 75%
- Moderate = 10%
- Severe = 5-10%
- **Death** = 1-5%

- Where do we send our HI patients?
- Be an eternal, pragmatic optimist!

Discussion

- Marked increase in diagnosis
- Some improvement in outcome
- Better understanding of

pathophysiology and

- brain injury
- Future looks somewhat better
- Cautious optimism appropriate

Deterioration

"...patients at greatest risk for inadequate diagnosis and treatment [are] those who are predicted to be at relatively low risk of dying..."

Klauber MR, Marshall LF, Luerssen TG, et al.: Determinants of head injury mortality: Importance of the low risk patient. Neurosurgery 24:31-36, 1989

Incidents that lead to injuries may not be intentional - BUT, they are **PREVENTABLE**

Optimal care of the child with traumatic brain injury requires timely intervention by a highly specialized group of dedicated individuals.

Thank You!

Pattisapu MD JO

Jogi V. Pattisapu, MD FAAP FACS

Emeritus Medical Director

Arnold Palme College of Me University of Orlando FL L

JogiP@mail.UCF.edu

