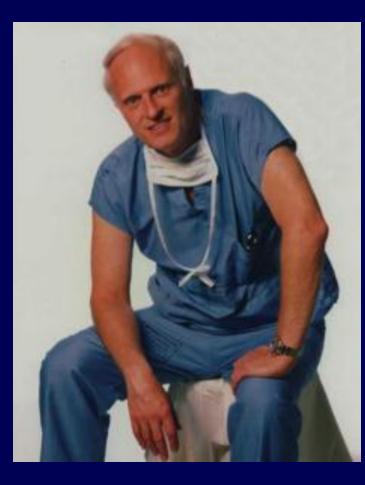
Intramedullary tumors: ongoing technical & decision-making challenge With emphasis on children

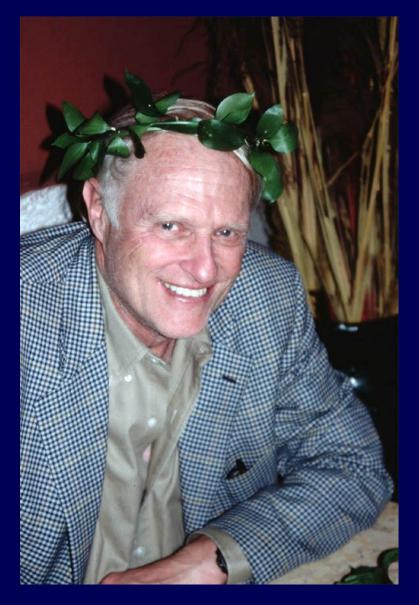
A surgeon's view

Shlomi Constantini, MD, MSc


Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv Medical Center, Tel Aviv, Israel sconsts@netvision.net.il


The plan for today.. IMSCT's

- Overview
- Clinical
- Imaging
- Setup
- Surgery
- Oncology
- Conclusions



Intramedullary tumors (& IOM): My bias!

- Fred Epstein's legacy
- + my own experience:
- Long Follow-up: available
- Awareness of morbidity
- Gradual change in strategy

Fred: an "inspiration" giant

Intramedullary tumors (& IOM): My own bias!

- Fred Epstein's legacy
- + my own experience:
- Long Follow-up: available
- Awareness of morbidity
- Gradual change in strategy

Added:

- Additional 5 years of follow-up
- Additional >300 Intra Dural spinal cases
 - In Israel

J Neurosurg 85:1036-1043, 1996

Intramedullary spinal cord tumors in children under the age of 3 years

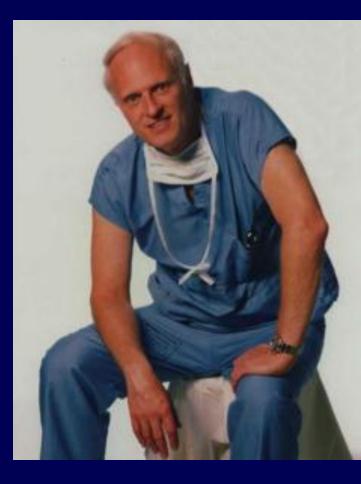
SHLOMO CONSTANTINI, M.D., M.SC., JOHN HOUTEN, M.D., DOUGLAS C. MILLER, M.D., PH.D., DIANA FREED, B.A., MEMET M. OZEK, M.D., LUCY B. RORKE, M.D., JEFFREY C. ALLEN, M.D., AND FRED J. EPSTEIN, M.D.

J Neurosurg (Spine 2) 93:183-193, 2000

Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults

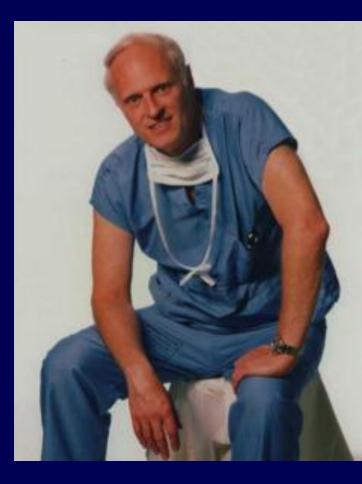
SHLOMI CONSTANTINI, M.D., M.SC., DOUGLAS C. MILLER, M.D., JEFFREY C. ALLEN, M.D., LUCY B. RORKE, M.D., DIANA FREED, AND FRED J. EPSTEIN, M.D.

Pediatric papers IMSCT


J Neurosurgery

85:1036-1043,1996

J Neurosurgery 93:183–193 ,2000


Intramedullary tumors (& IOM): My own bias!

- Fred Epstein's legacy
- + my own experience:
- Long Follow-up: available
- Awareness of morbidity
- Gradual change in strategy

Intramedullary tumors: My own bias!

- Fred Epstein's legacy
- + my own experience:
- Long Follow-up: available
- Awareness of morbidity
- Gradual change in strategy

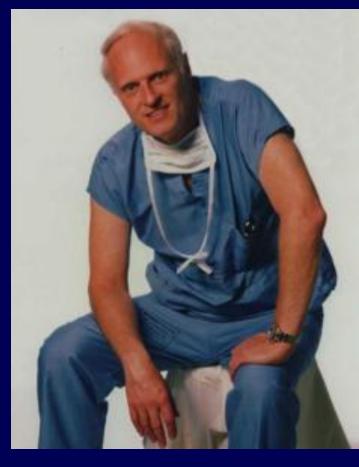
Cover Comment

Hua Tuo Hua Tuo, Patron of Surgeons Spinal cord or, How to Get Into Another-Head-Without Losing Your Own! Head

A. SHERER, F.EPSTEIN, M.D., S.CONSTANTINI, M.D.

Surgical Neurology 2004

There is lots of talking to do before & after the surgery



Always more when you deal with children

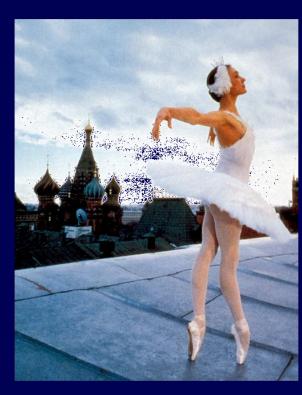
Intramedullary tumors: My own bias!

- Fred Epstein's legacy
- + my own experience:
- Long Follow-up: available
- Awareness of morbidity
- Gradual change in strategy

Major role to

Intra-operative Monitoring IOM

IMSCT: History & Overview I


- < 80's
- *"It is not feasible to carry out extensive removal of tumors from within the center of the spinal cord without inflicting injury"*

Textbook of neurosurgery

IMSCT: History & Overview II

- Decompression+RxT (not that bad for old-age)
- There is no "alternative treatment" ??
- Major change in the late 70's...
- Pre-MR data is useless!
- Long-term follow-ups are available
- 2000: Gradual balanced view..
- :+2000
 - Employ Multi-modality treatment
 - Implement modern techniques
 - Tailor treatment individually

- Pediatric IST are rare
- *P-IMSCT's are rarer*
- About 2-3/100,000 children per year
- More adult IMSCT then children 1:8

Better if same surgeon does both kids & adults!

Ependymoma/Astro ratio goes up with age

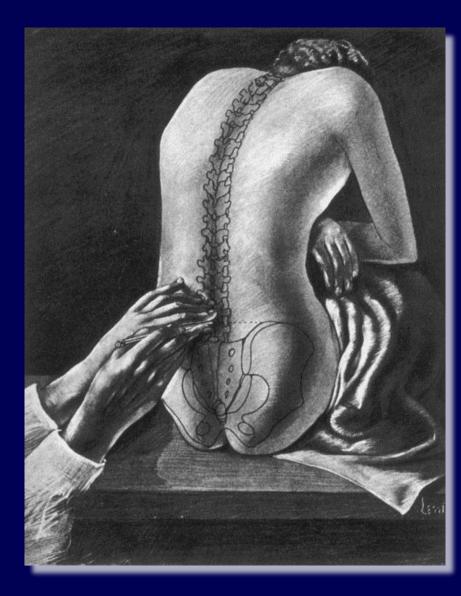
Intraspinal tumors in 872	children	
Tumor Type and Location	No.	%
Intramedullary	315	36.1
Astrocytoma	201	23.1
Ganglioglioma	35	4.0
Ependymoma	3	0.3
Other	76	8.7
Intradural Extramedullary	235	26.9
Schwannoma	32	3.7
Meningioma	21	2.4
Ependymoma	58	6.7
Dermoid/ Epidermoid	55	6.3
Teratoma	37	4.2
Lipoma	32	3.7
Extradural	212	24.3
Neuroblastoma	69	7.9
Sarcoma	62	7.1
Lymphoma	5	0.6
Aneurismal Bone Cyst	7	0.8
Met ast ati c	33	3.8
PNET	36	4.1
nonclassified	110	12.6
<u>Total:</u>	872	100

From: Constantini & Epstein, Schmidek 1995

P-IMSCT's: Reasons for Investigation

 Motor regression 	65%
Pain	45%
 Gait abnormalities 	37%
 Dysesthesia 	32%
 Progressive kypho-scolios 	sis 32%

P-IMSCT's: Clinical Presentation I


• **Pain**: the most common symptom

At night! True for children & adults! Night pain=MR+BS Corresponds to the bony level Abdominal pain: Non-specific!

For adult ependymomas: Sensory complains

P-IMSCT's: Clinical Presentation II

- Pain
- Scoliosis
- Urinary dysfunction
 - Rare & late
 - In cauda / conus lesion
- Torticollis
- Hydrocephalus
- Malignant tumors

When to MR patients with scoliosis

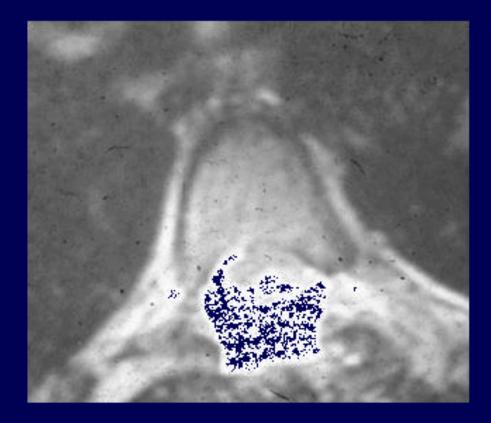
- Documented Rapid Progression
- Atypical curve
- Age: early onset < 8y
- Any neurological/urological sign
- Vertebral and midline anomalies
- Pain (especially at night) (Bone scan)
- As screening in dysraphic children

P-IMSCT's: Clinical Presentation II

- Pain
- Scoliosis
- Urinary dysfunction Rare & late In cauda / conus lesion
- Torticollis
- Hydrocephalus
- Malignant tumors: fast!

No reason HCP + high protein CSF----Investigate the cord!

2y old came for a shunt



P-IMSCT's: Clinical Presentation III • Motor (may be subtle!) Alternation of normal gait Regression Late walker Switching handidness Muscle atrophy (low cervical)

ederlage gege Stefan Edber

P-IMSCT's: Radiology I: X Ray+CT Probably, totally useless

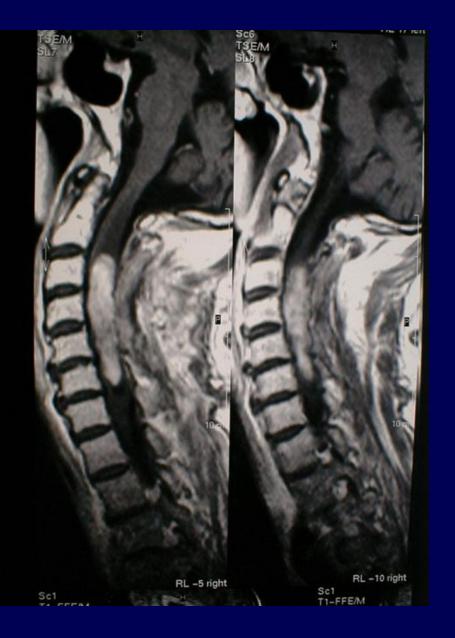
- Diffuse widening
- Erosion of pedicles
- Scalloping

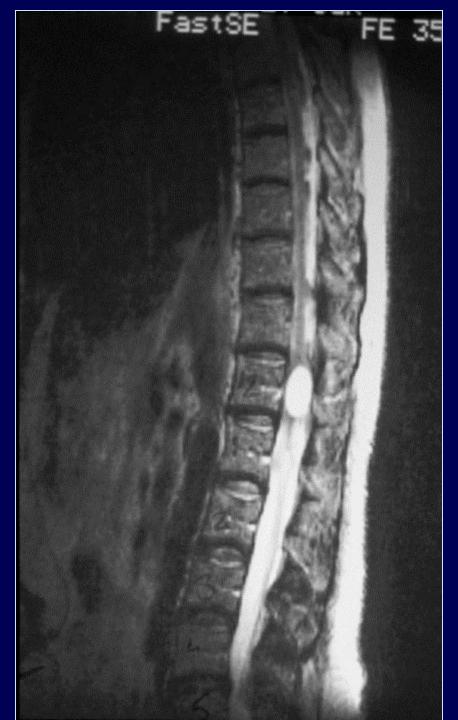
IMSCT's: Radiology II: MR imaging

• Always with Gd

May or may not enhance (75%)

- T1: solid & cystic components
- T2: myelographic effect
- Alway get the entire spine!
- Consider getting a brain MR for baseline


10 y old 1998 Drooling & neck pain C3-6 astrocytoma


15 years old

Came after she had a biopsy, dural decompression & RxT Enjoyed..

Symptoms back 3 years later Astrocytoma

2 years old girl Continence-regression Conus ganglioglioma Solid tumor!

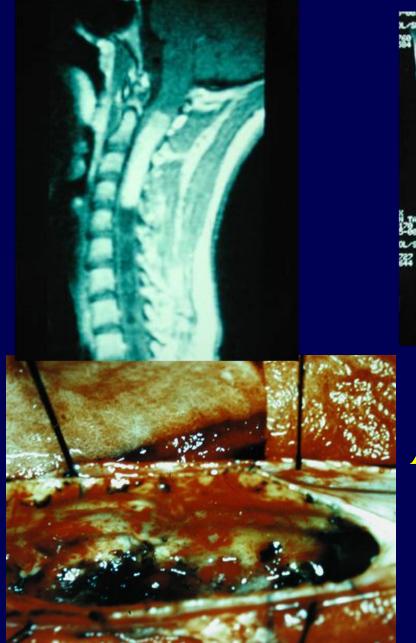
4 years old with incontinence Conus/Cauda ependymoma Note the large bladder

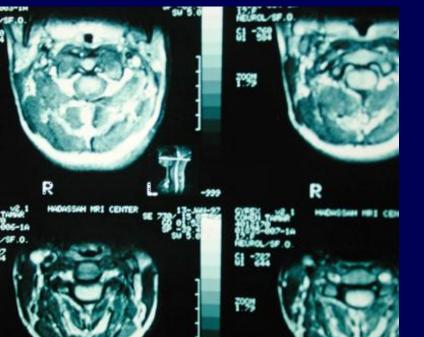
These are not "true" IMSCT's

14 years old Mother insisted to get imaging because of pain

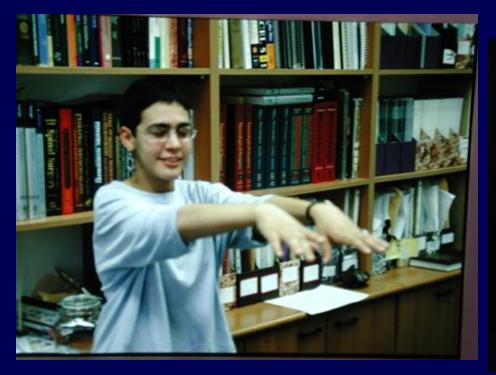
CT: "Normal"

Ganglioglioma




12 years old with pain "primary" spinal PNET No brain lesion Not a true IMSCT

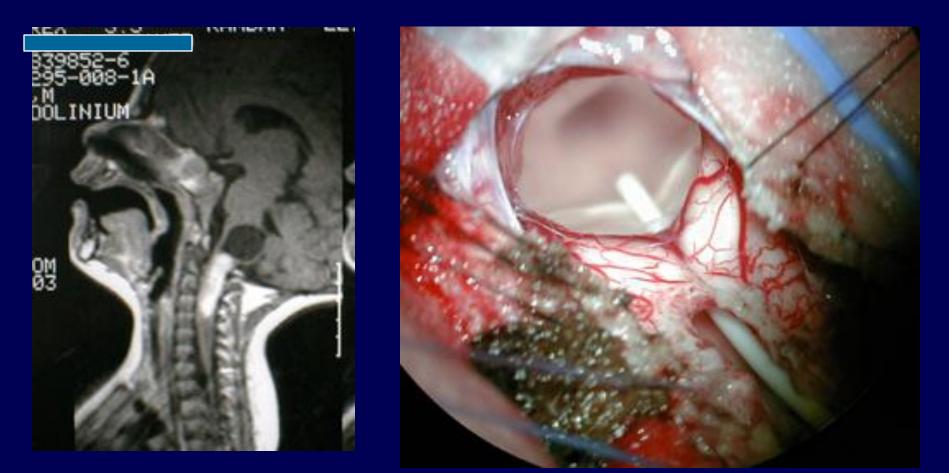
Subarachnoid tumors



16 y with 9y clumsiness Almost paralyzed deltoids Astrocytoma

A long symptomatology does not exclude a neoplasm!

Intramedullary astrocytoma Post operatively



COHEN TAMAR 4012170 01728-008-1A 17,F NEUROS-U.NIDAL C1 -746 W1 616

200M

3y old Presented with drooling & torticollis Astrocytoma: Cervico-medullary

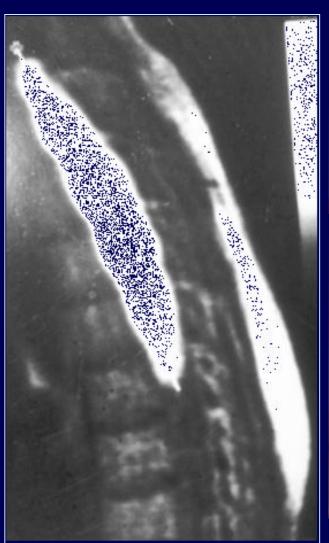
Note dorsal direction after hitting pyramid decussation

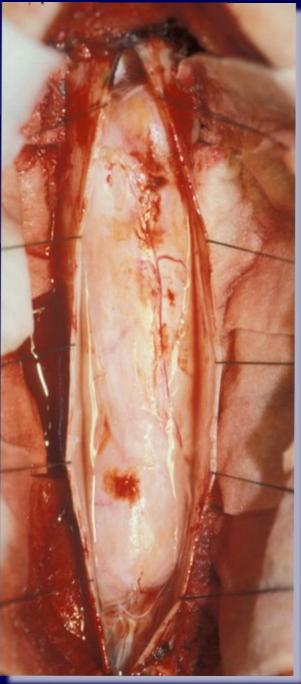
2 years after surgery:

Local recurrence..

V+C chemotherapy---CR

No evidence of disease 3 years later


3 years later



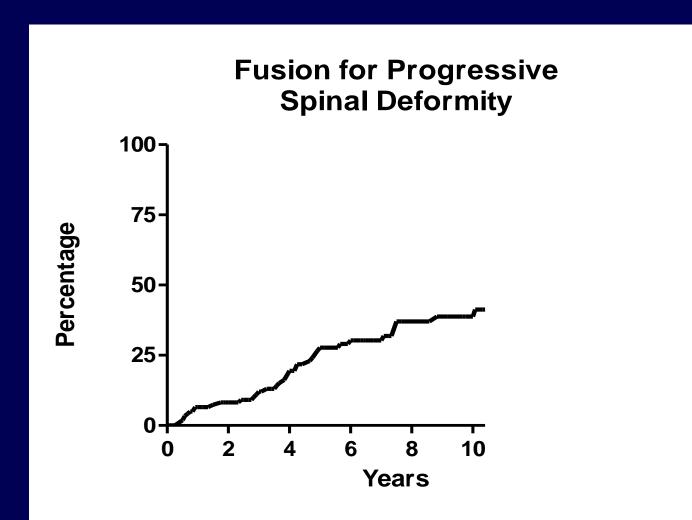
Intramedullary lipomatosis: A different entity

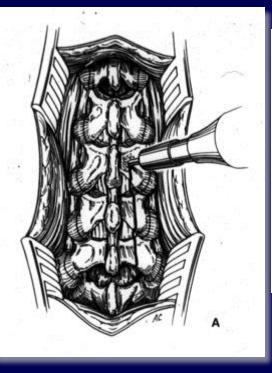
Cautious with indication

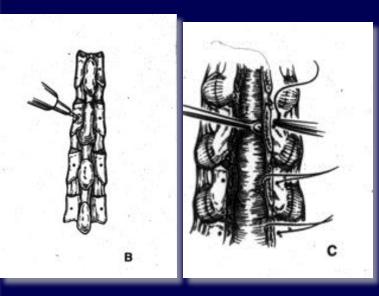
Cautious with resection

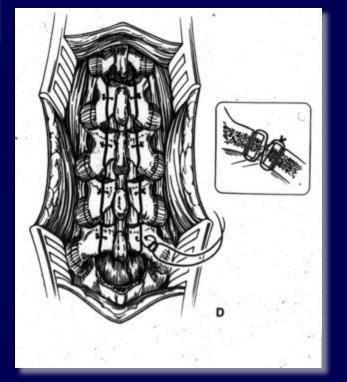
Scoliosis in IMSCT's is a major problem

ting editorial in this issue, pp 460-462.


J Neurosurg (6 Suppl Pediatrics) 107:463-468, 2007


Risk factors for progressive spinal deformity following resection of intramedullary spinal cord tumors in children: an analysis of 161 consecutive cases


KEVIN C. YAO, M.D.,¹ MATTHEW J. MCGIRT, M.D.,² KAISORN L. CHAICHANA, B.S.,² SHLOMI CONSTANTINI, M.D.,³ AND GEORGE I. JALLO, M.D.²


Estimated Incidence of Fusion for Progressive Deformity

Median follow-up: 9 years

Laminotomy Vs Laminectomy:

Is it worth the time?

Conclusions

• Progressive spinal deformity requiring fusion occurred in 27% of children undergoing resection of IMSCT and was associated with decreased functional status

• Preoperative scoliosis, increasing number of surgical resections, age<13 years, tumor-associated syrinx, and surgery spanning the thoraco-lumbar junction independently increased risk for progressive spinal deformity

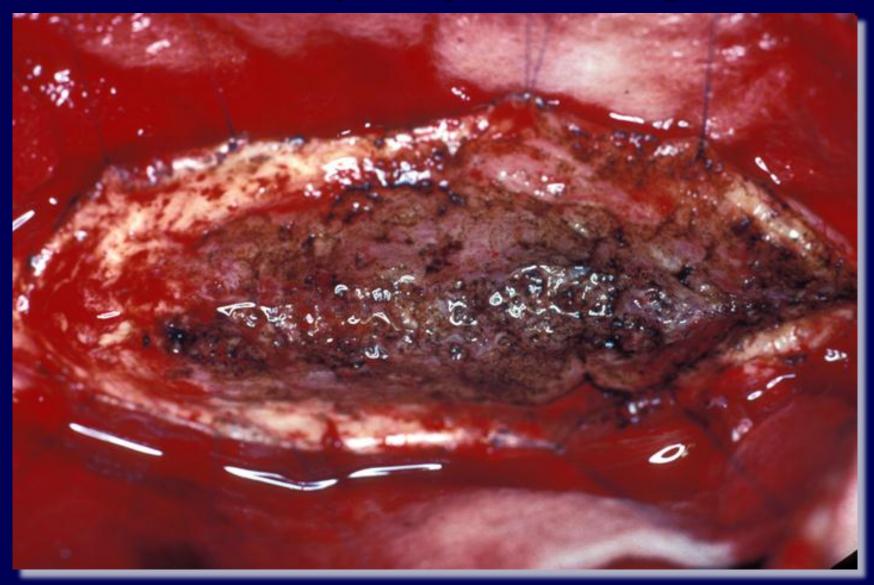
• Patients possessing one or more of these characteristics should be monitored closely for progressive spinal deformity following surgery

Ultrasonic aspirator

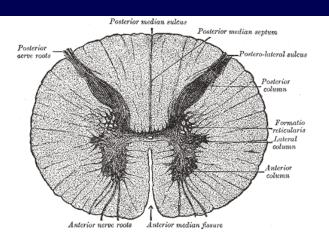
DISTAL END OF HANDPIECE

CUSA

Aspiration

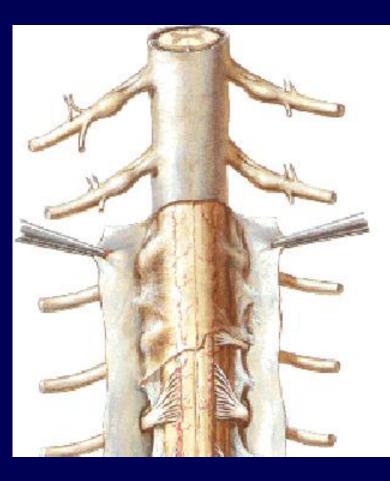

Lasers...not important

YAG-Neomodium



CO2 laser: Midline myelotomy & "charcoaling" the residual



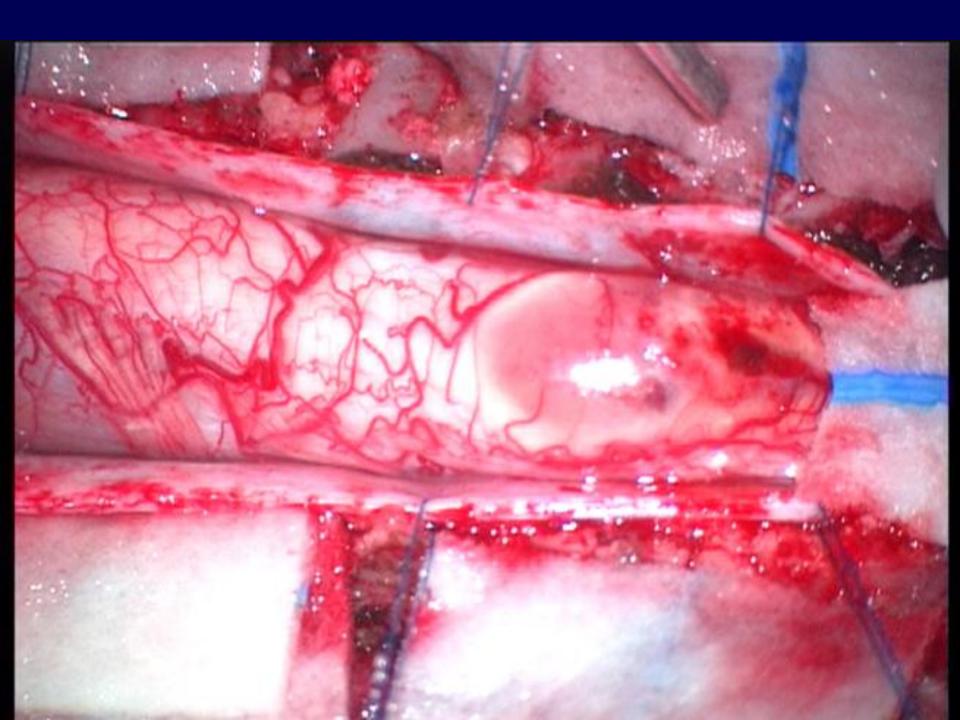

Lately some revival with "touch" fibers

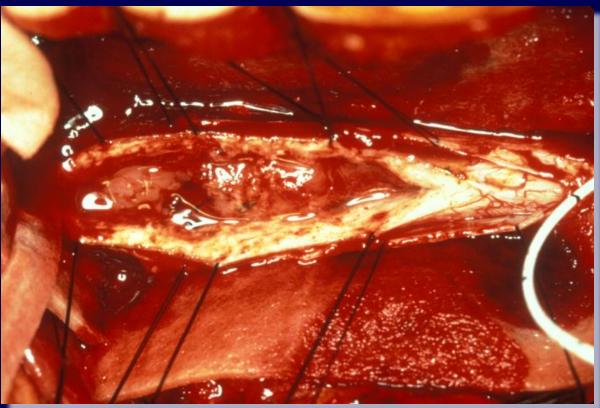
Spinal Cord anatomy Where to enter? Gray Vs. White matter

Transverse section of the medulla spinalis in the mid-thoracic region.

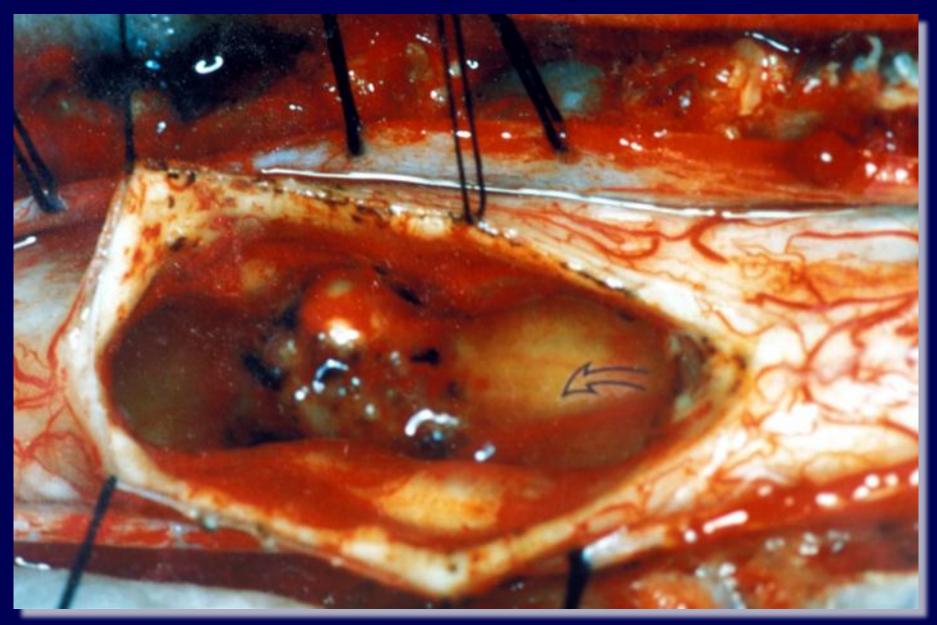
Astrocytoma: makes the way out...

DREZ protrusion


1.5 years old:Right hand plegia over 3 weeks


Show film of DREZ entry to IMSCT

W:1040 L: 478 Z: 1.00 P: +0.0 cm +0.0 cm


Don't do that!

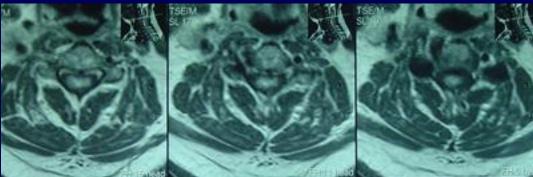
Midline entry

Risk proportional to the thickness of the DC's

Locating the cyst

Note diagonal vessels



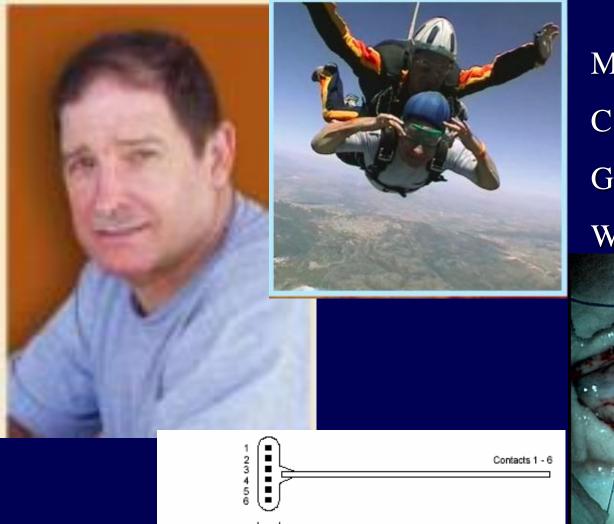


Midline entry: astrocytoma

Midline entry: astrocytoma

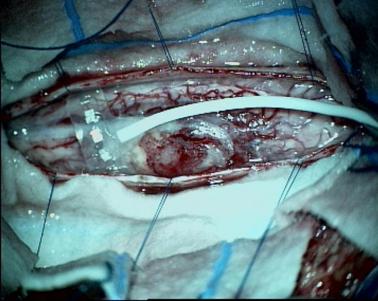
50 y male Progressive Spastic paraparesis

Show midline myelotomy



Midline: adult ependymoma

Midline entry for Adult ependymoma

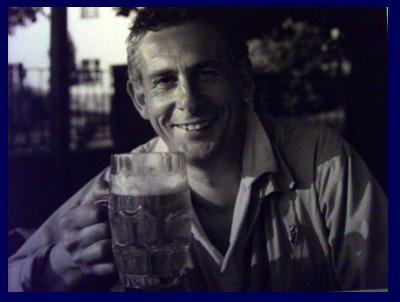

Position-sense loss Following IMSCT surgery

6.0 mm

Mr. A C1-5 ependymoma: GTR

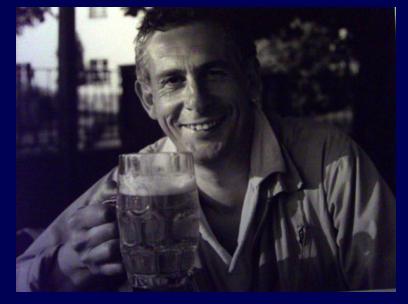
Walker and runner

When to stop ?


- Normal white matter appears
- When you get to the anterior vessels
- Be cautious at the "poles"
- In conus 50%
- When MEP's drop!

"You can teach a monkey how to operate"

You cannot teach a monkey when not to operate"


Sir John Garfield

"You can teach a monkey how to begin an operation

You cannot teach a monkey when to stop"

Modified from: Sir John Garfield

Radical excision of intramedullary spinal cord tumors: surgical morbidity & long-term follow-up evaluation in 164 children and young adults *CONSTANTINI, MILLER, ALLEN, RORKE, FREED, EPSTEIN* J Neurosurgery 93:183–193, 2000

164 Pt Age: 6m-21y
Operated 14 years
64% had previous surgery (30% previous RxT)

Policy: after GTR no further treatment

Location of tumor site

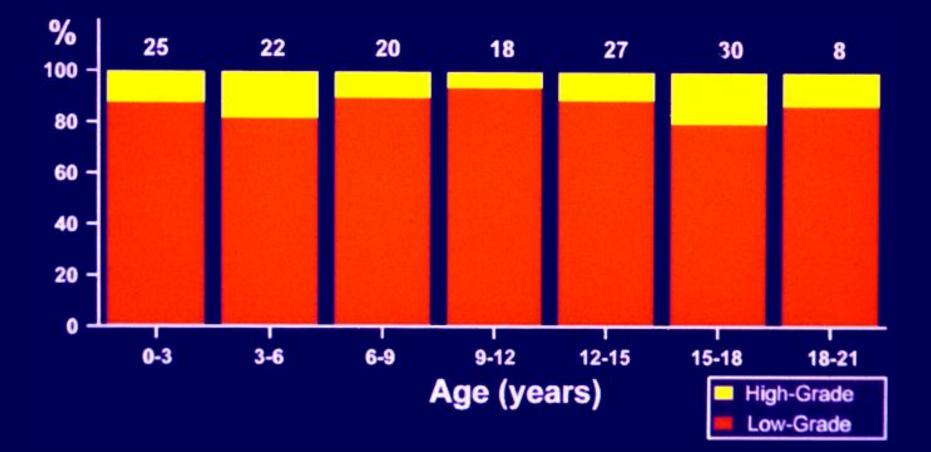
(164 patients) with IMSCT's

Spinal Level	No. of Patients	Percent
cervicomedullary	14	8.5
cervical	26	15.6
cervicothoracic	44	26.8
thoracic	64	39.0
conus	16	9.8

tumor span* 2–10 bone levels, average 5.4

•Tumor span was calculated for the solid part of the tumor, excluding caudal or rostral cysts.

•Only 2 patients with LGG: metastatic disease on presentation


EXTENT OF RESECTION (164 children) WITH IMSCT'S

	No. of Patients (%)		
Type of			
Resection	1st Op	2nd Op	
GTR (>95%) clean MR	126 (76.8) (66)	29 (70.7)	
STR (80-95%)	33 (20.1) (30)	11(26)	
partial	5 (3.0) (4)	1 (2.4)	
	164	41	

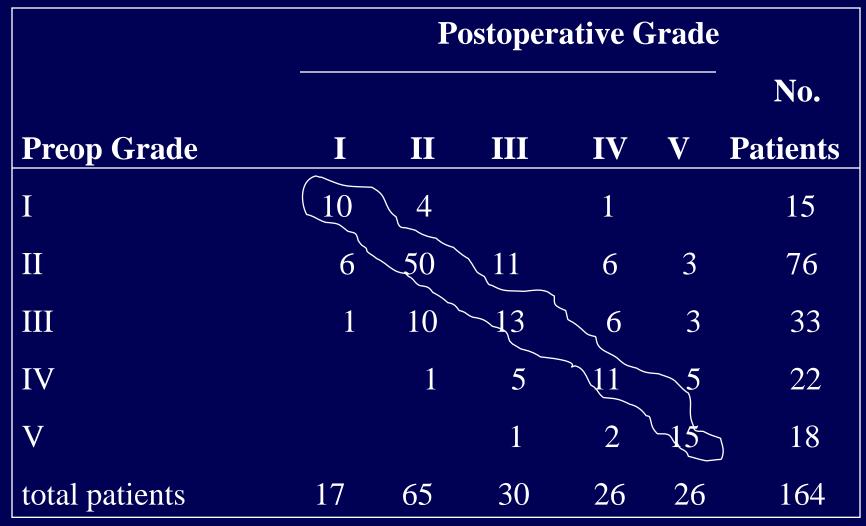
In Yellow SC's data on 75 cases

Note the STR is still a very aggressive surgery!

LOW GRADE VERSUS HIGH-GRADE TUMORS ACCORDING TO AGE

Histo-pathology (164 Ped IMSCTS)

Histological Type	No. of Tumors	Percent	
Astrocytoma	76	46.3	
Low grade	58		Children:
Anaplastic	14		Ependymomas are rareNo pilocytic astrocytomas
Glioblastoma	4		•No pure oligo's
Ganglioglioma	44		•The GG issue in NY
Ependymoma	19	11.6	•HG group=19
Regular	12		
Myxopapillary	7		Adults:
Mixed glioma	10	6.1	•Ependymoma 65%
Astro/Oligo	6		•Astrocytoma 25%
Astro/Oligo/Ependym	oma 1		•Others 15%
Astro/Ependymoma	3		
GGNC	11	6.7	
GNF	3	1.8	
PNET	1	0.6	


FUNCTIONAL GRADE BEFORE OR

Grade	n	%
1	15	9.1
2	76	46.3
3	33	20.1
4	22	13.4
5	18	11.0

- I neurologically intact; walks normally;may have minimal dysesthesia
- II mild motor or sensory deficit; maintains functional independence (walking, feeding, &using the bathroom)
- III moderate deficit; limitation of function; independent with external aid
- IV more severe motor or sensory deficit; limited function with dependency
- V paraplegia or quadriplegia (even if there is flickering movement)

*Scale modified from McCormick PC,Torres R,Post KD,et al: *J Neurosurg* 72:523–532,1990.

PREOPERATIVE COMPARED WITH POSTOPERATIVE FUNCTIONAL GRADES (164 PATIENTS) WITH IMSCTS

Below the line: Improvement!

MORBIDITY

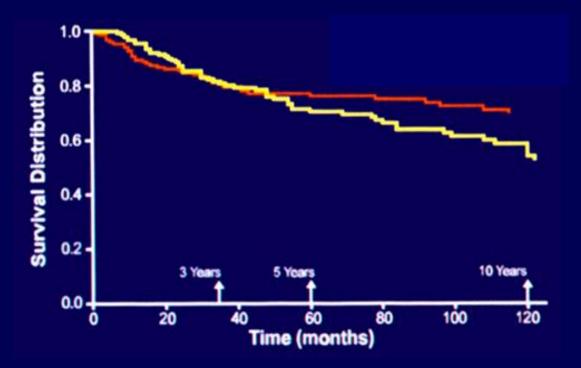
No effect:

- Symptomatology length
- Previous treatment (OR-RT-Chemo)
- Tumor level
- Cysts
- Enhancement
- Span
- Age
- Extent of resection (tribute to FE)
- Histology (high Vs. low grade)

Negative effect

- Higher Functional grade!!! p=0.032
- Children with shunts p=0.029

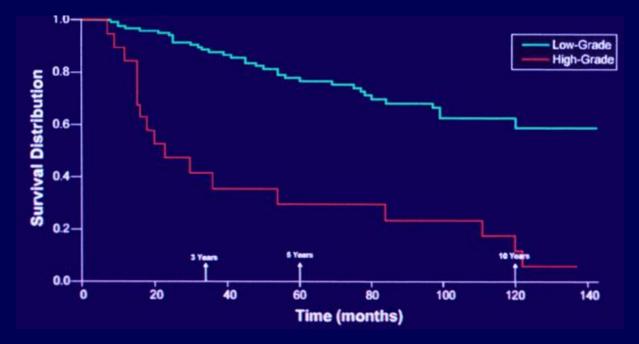
MORBIDITY


FE RESULTS		SC RI	ESULTS
60.4%	Same	54%	
15.8%	Improved		20%
23.8%	Deteriorated	26%	
7.9%	Deteriorated >1 grade 13/164	4%	
2.4%	Deteriorated >2 grades	4%	

In second half of study; No patient in Grade 1 deteriorated more then 1 grade

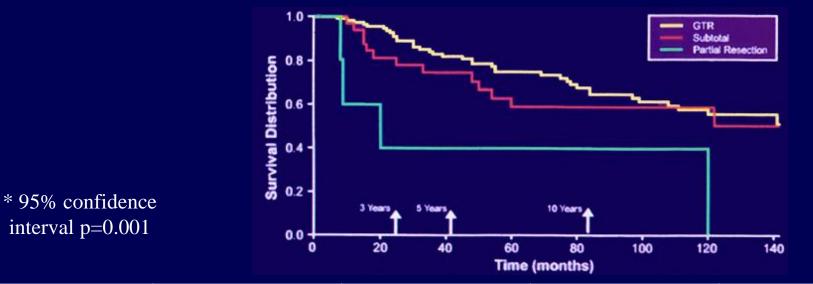
MORBIDITY

FE RESULT	S	SC RESULTS	
60.4%	Same	54%	
15.8%	Improved	20%	
23.8%	Deteriorated	26%	
7.9%	Deteriorated >1 grade 13/164	4%	
2.4%	Deteriorated >2 grades	3%	
		90% of deteriorating adult patients: Sensory	


SURVIVAL & PROGRESSION FREE SURVIVAL (PFS) 155 CHILDREN WITH IMSCT

	No. of cases	3 Years	5 Years	10 Years
Survival	155	0.80	0.76	0.70
		(0.74-0.86)*	(0.69-0.83)	(0.61-0.79)*
Progression	155	0.80	0.71	0.54
Free Survival		(0.74-0.86)*	(0.63-0.79)	(0.44-0.64)*

* 95% confidence interval


PROGRESSION FREE SURVIVAL FOR LOW-GRADE VERSUS HIGH-GRADE IMSCT

	No. of Cases	3 Years	5 years	10 Years
Low Grade	124	0.88 (0.12-0.94)*	0.78 (0.70-0.86)*	0.63 (0.52-0.74)*
High Grade	19	0.36 (0.13-0.57)*	0.30 (0.08-0.51)*	(0.32-0.74) 0.12 (0-0.27)*

* 95% confidence interval p<0.0001

EFFECT OF EXTENT OF RESECTION ON PROGRESSION FREE SURVIVAL

	No. of cases	3 Years	5 Years	10 Years
GTR (>95%)	117	0.83	0.75	0.56
		(0.76-0.90)*	(0.67-0.84)*	(0.45-0.67)*
Subtotal (80-	33	0.75	0.59	0.59
95%)		(0.60-0.90)*	(0.41-0.77)*	(0.41-0.77)*
Partial	5	0.40	0.40	0
Resection		(0-0.03)*	(0-0.83)*	

At 3 & 5 years; significant difference. At 10y no! True for the entire

FOLLOW UP

Ν	155	(9 Pts. Lost)
Average	7.09years	1-16 years
Only Surgery	73.5%	

116 alive (74.8%)

39 dead (25.2%)

•33/39 who died, from lepto-meningeal disease

Tumor recurrence

- 58 patients: mean time to Rec: 38m
- Typically in original site
- 37: repeat surgery
 - Of these 26 alive (8y) later

Same morbidity!

Re-surgery is an option when a LG tumor recurs

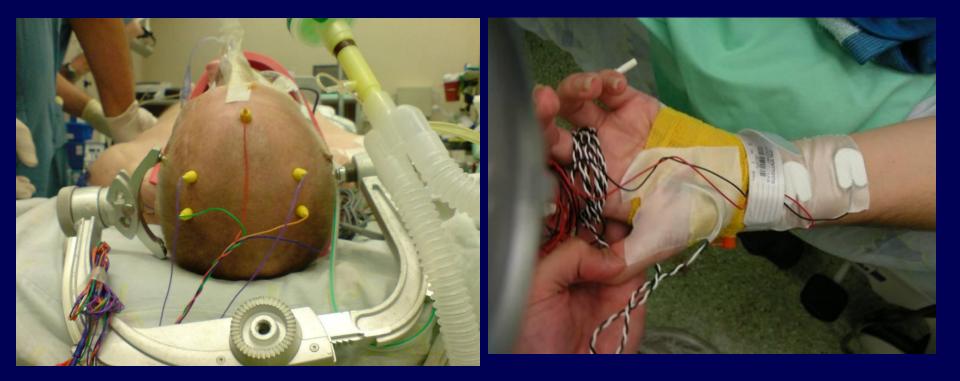
Clinical status at follow-up

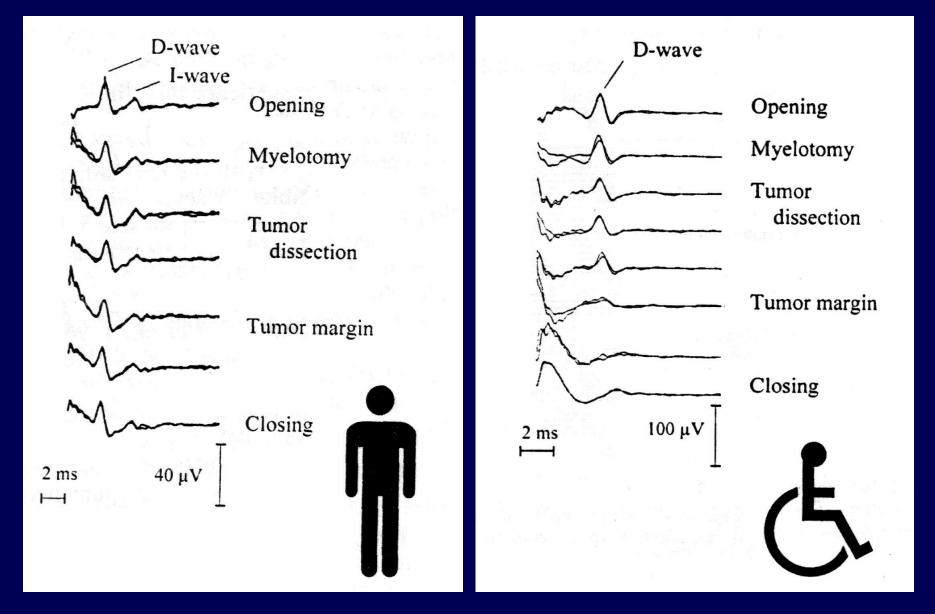
- 116 pt with a mean follow-up of 13.1y
- >60% grade I or II
- 65% are independent
- 86% normal schooling
- 72% kypho-scoliosis 27.1% Surgery

Urinary problems: 40.5%

Pain in 6.9%

Still an extremely challenging disease!

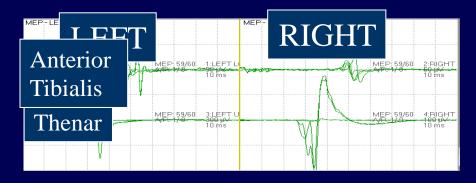

CONCLUSIONS


- Surgery for IMSCT's in children can be performed radically & rather safely.
- The postoperative functional performance is determined by the preoperative defect
- IMSCT's should be recognized as potentially excisable lesions upon their presentation & when they recur.
- Less then radical tumor removal in IMSCT's may be sufficient for low-grade lesions.
- The optimal treatment for malignant lesions is still to be determined.

Tc MEP's: Where are we today

Interesting Informative Useful **Extremely useful Increase safety Mandatory**? **Standard of care?**

Standard MEP stimulation & SSEP recording setup



MEP's: sensitive and not always specific! *Patients may not be "monitorable"*

Trans-cranial- Motor Evoked Potentials (tcMEP)

Morota, Deletis, Constantini, Kofler, Cohen, Epstein The role of motor evoked potentials (MEP's) during surgery for intramedullary spinal cord tumors. Neurosurgery 41 (6) 1327-1336 1996

We did not have enough disasters

The Role of Motor Evoked Potentials during Surgery for Intramedullary Spinal Cord Tumors

Author(s):	Morota,, Nobu MD; Deletis,, Vedran MD, PhD; Constantini,, Shlomi MD; Kofler,, Markus MD; Cohen,, Henry MPH; Epstein,, Fred J. MD	ISSN: 0 [.] Accessi
Issue:	Volume 41(6), December 1997, pp 1327–1336	
Publication Type:	[Technique Applications]	
Publisher:	Copyright © by the Congress of Neurological Surgeons	
	Division of Pediatric Neurosurgery (NM, FJE), Departments of Anesthesiology(VD) and Environmental Medicine (HC), New York	
	University Medical Center, New York, New York; Department of Neurosurgery (SC), Hadassah University Hospital, Jerusalem, 👘	
	Israel; and Department of Neurology (MK), University Hospital Innsbruck, Innsbruck, Austria	

Francesco Sala, M.D.

Section of Neurosurgery, Department of Neurological and Visual Sciences, University Hospital, Verona, Italy

Giorgio Palandri, M.D.

Section of Neurosurgery, Department of Neurological and Visual Sciences, University Hospital, Verona, Italy

Elisabetta Basso, M.D.

Section of Neurosurgery, Department of Neurological and Visual Sciences, University Hospital, Verona, Italy

Paola Lanteri, M.D.

Section of Neurosurgery, Department of Neurological and Visual Sciences, University Hospital, Verona, Italy

Vedran Deletis, M.D.

Division of Intraoperative Neurophysiology, Institute for Neurology and Neurosurgery, Beth Israel Medical Center, New York, New York

Franco Faccioli, M.D.

Section of Neurosurgery, Department of Neurological and Visual Sciences, University Hospital, Verona, Italy

Albino Bricolo, M.D.

Section of Neurosurgery, Department of Neurological and Visual Sciences, University Hospital, Verona, Italy

MOTOR EVOKED POTENTIAL MONITORING IMPROVES OUTCOME AFTER SURGERY FOR INTRAMEDULLARY SPINAL CORD TUMORS: A HISTORICAL CONTROL STUDY

OBJECTIVE: The value of intraoperative neurophysiological monitoring (INM) during intramedullary spinal cord tumor surgery remains debated. This historical control study tests the hypothesis that INM monitoring improves neurological outcome.

METHODS: In 50 patients operated on after September 2000, we monitored somatosensory evoked potentials and transcranially elicited epidural (D-wave) and muscle motor evoked potentials (INM group). The historical control group consisted of 50 patients selected from among 301 patients who underwent intramedullary spinal cord tumor surgery, previously operated on by the same team without INM. Matching by preoperative neurological status (McCormick scale), histological findings, tumor location, and extent of removal were blind to outcome. A more than 50% somatosensory evoked potential amplitude decrement influenced only myelotomy. Muscle motor evoked potential disappearance modified surgery, but more than 50% D-wave amplitude decrement was the major indication to stop surgery. The postoperative to preoperative McCormick grade variation at discharge and at a follow-up of at least 3 months was compared between the two groups (Student's *t* tests).

RESULTS: Follow-up McCormick grade variation in the INM group (mean, +0.28) was significantly better (P = 0.0016) than that of the historical control group (mean, -0.16). At discharge, there was a trend (P = 0.1224) toward better McCormick grade variation in the INM group (mean, -0.26) than in the historical control group (mean, -0.5).

CONCLUSION: The applied motor evoked potential methods seem to improve long-term motor outcome significantly. Early motor outcome is similar because of transient motor deficits in the INM group, which can be predicted at the end of surgery by the neurophysiological profile of patients.

KEY WORDS: Motor evoked potentials, Neurophysiological monitoring, Outcome, Spinal cord tumor

Neurosurgery 58:1129-1143, 2006 DOI: 10.1227/01.NEU.0000215948.97195.58 www.neurosurgery-online.com

The advent of magnetic resonance imaging (MRI) now permits an early diagnosis of intramedullary spinal cord tumor (ISCT) (46), which has proven to faIntraoperative neurophysiological monitoring (INM) has been increasingly used to assist in the surgical management of these tumors. Somatosensory evoked potentials (SEPs) have

Non-Monitorable

Existing & stable MEP's Existing-deteriorating-recover Existing-deteriorating

> Simplistic approach! "MEP's for dummies"

Non-Monitorable

Existing & stable MEP's Existing-deteriorating-recover Existing-deteriorating

Around 30% (Morota-1996)

These are the patients were MEP is most important

Non-Monitorable

Existing & stable MEP's Existing-deteriorating-recover Existing-deteriorating

"allowing" further resection (Re-assurance)

What is the rate of False-negative (D Waves & mMEP)??

Prolongation of the surgeon's life-expectancy

Non-Monitorable

Existing & stable MEP's Existing-deteriorating-recover Existing-deteriorating

Abort??

Yes! Immediately??

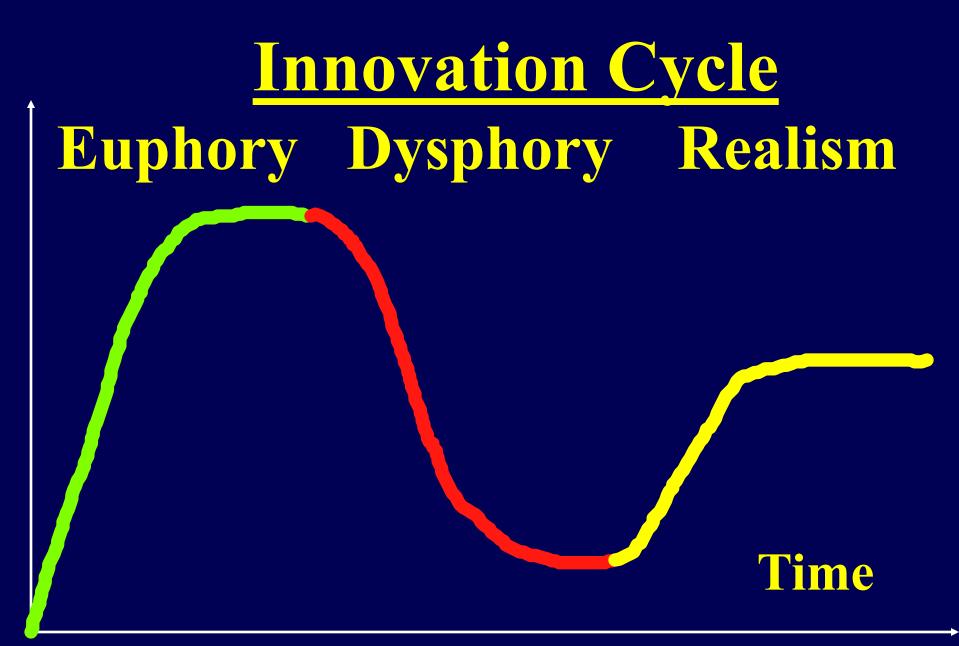
Check for "technical" reasons, wait (how long?), Change place

Non-Monitorable

Existing & stable MEP's Existing-deteriorating-recover Existing-deteriorating

What is a "significant" deterioration?

What is a "significant MEP drop?


- When you loose muscle MEP's

- Binary measurement
- When D-wave <50%
 - Quantitative

Non-Monitorable

Existing & stable MEP's Existing-deteriorating-recover Existing-deteriorating

Decision-making is difficult! Has to be individualized First-do-no-harm

From Aschoff

Tc MEP's: Where are we today?

- Interesting Informative Useful **Extremely useful Increase safety Mandatory**?
- **Standard of care?**

Our job is to learn more, train, educate

There will be no Level-I evidence to show that IOM for SCT's improves resection & safety

Suggestion: multi-center cooperation and data collection

Bruegel's The fight between Carnival & Lent

Saving one patient from paraplegia

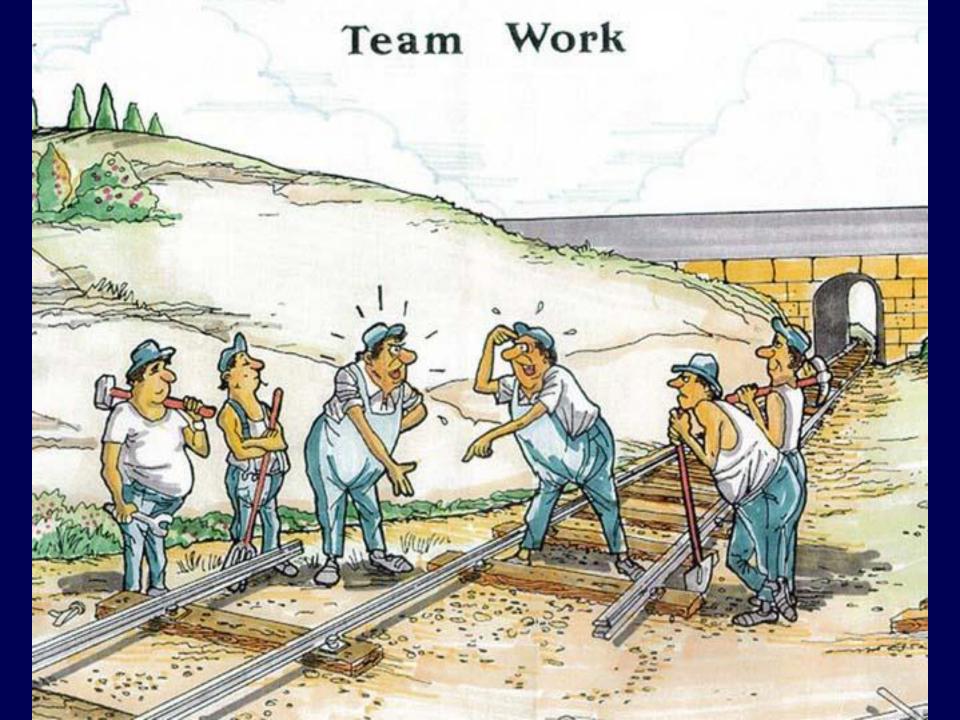
The Challenge!

Think!

Consult!

Listen!

Know your limitations.



Our fellows:

Russia, Turkey, Israel, Palestine, India, China, Greece

