Predicting Aneurysm Rupture:
 Computer Modeling of Geometry and Hemodynamics

Robert E. Harbaugh, MD, FACS, FAHA
Director, Penn State Institute of the Neurosciences
University Distinguished Professor \& Chair, Department of Neurosurgery Professor, Department of Engineering Science \& Mechanics

Penn State University

Disclosures

Θ Active Grant Funding - Codman, Medtronic, Integra Neuroscience, Integra Foundation, Wyoming Valley Healthcare, Commonwealth of Pennsylvania, NIH - R01-NS049135-01 and R01-HL083475-01A2
Θ Consultant - Micromechatronics, MedCool, Piezo Resonance Innovations, SIO Healthcare Advisors

- Stock - Micromechatronics, MedCool, Piezo Resonance Innovations, Cortex
θ Fiduciary Responsibility -
Ө President, CHYNA, LLC
θ President, NeuroPoint Alliance
Ө U.S. Patent Applications - 20060212097 and 20070138915

Acknowledgements

Ma B, Harbaugh RE, Raghavan MIL: ThreeDimensional Geometrical Characterization of Cerebral Aneurysms. Ann Biomed Eng 32: 264-273, 2004
Ma B. Harbaugh RE, Lu J, Raghavan MIL: Modeling the Geometry, Hemodynamics and Tissue Mechanics of Cerebral Aneurysms. Proc Int Mech Eng Congress. November 13-19, 2004, Anaheim, CA
Raghavan MIL, Ma B, Harbaugh RE: Quantified Aneurysm Shape and Rupture Risk. JNS 102: 355-360, 2005

Aneurysm Growth and Rupture: Unanswered Questions

If aneurysms $<10 \mathrm{~mm}$ rarely rupture, why do clinical series always demonstrate that most ruptured aneurysms are $<10 \mathrm{~mm}$?

Why did this aneurysm rupture?

And this one didn't?

Predicting Rupture: Geometry

Presently: size (maximum dimension) is used

 Is shape also an important factor?O Single-lobe vs, multi-lobular
Neck-to-height ratio
Ratio of neck to maximum diameterRegular vs. irregular

Specific Aims of the Current Project

- Use anatomically realistic 3D geometry
- Geometrical quantification: local and global geometrical features from CTAMRA/DSA 3-D mesh analysis
- Hemodynamic simulation: simulation of blood flow in anatomically realistic cerebral vasculature and aneurysms
θ Correlate geometry and biomechanics

Study Population

Ө CTA/MRA/DSA reconstructed human cerebral aneurysms along with the surrounding vasculature

- Analyze ruptured and unruptured aneurysms
- Hypothetical, axisymmetric models used to evaluate and validate the different indices.

Part 1: Quantifying Geometry

Ө Geometry
θ Size (objective) and shape (subjective)
θ Quantifying geometry: numerical rather than descriptive

- Global size indices: surface area, volume, maximum diameter
θ Global shape indices
- Local and global curvature indices

Quantifying Geometry: Overview

- Acquire 3-D digital data from CTA/MRA/DSA
θ Develop algorithms for surface mesh refinement
- Isolate the aneurysm sac

Ө Quantify aneurysm volume and surface area

- Quantify aneurysm curvature

Ө Quantify other size and shape indices

Mesh Refinement

Raw

Isolating the Aneurysm

Pinal Aneurysm Mesh for Analysis

Convex Hull of Aneurysm

Convex Hull: The smallest encompassing surface that is convex at all points

Convex Hull

Dstimation of Principal Curvatures

Hamann, B. (1993). Curvature approximation for triangulated surfaces. in Geometric Modeling. G. F. e. al, Springer-Verlag: 139-153.

Negative, Zero and Positive Gaussian Curves

Mean and Gaussian Curvatures

Initial estimation

Refined 2 times by Contextual Peer Review technique

1 and 2 Dimensional Quantified Geometrical Indices

© 1-D size indices:
Height (H)
Maximum Diameter $\left(\mathrm{D}_{\max }\right)$
Neck Diameter (D_{n})
© 2-D shape indices:
Aspect Ratio:

$$
A R=H / D_{n}
$$

Bottleneck Factor:

$$
B F=D_{\max } / D_{n}
$$

Bulge Location:

$$
B L=H_{b} / H
$$

3 Dimensional

Quantified Geometrical Indices

θ Size Indices
θ Surface Area - sum of triangles

- Shape Indices

OConvexity Ratio - CR $\quad C R=\frac{V}{V_{C H}}$
Ө Inversely proportional to irregularity

OIsoperimetric Ratio - IPR $I P R=\frac{S}{V^{2 / 3}}$
Ө Proportional to Irregularity

Testing on Hypothetical and Real Aneurysms

A1
CR: 0.98
IPR: 4.11

Hemisphere CR: 1
IPR: 3.84

A2
CR: 0.98
IPR: 4.15

1/2 Ellipsoid CR: 1
IPR: 4.13

A3
CR: 0.88
IPR: 4.68

A4
CR: 0.97
IPR: 4.61

A5
CR: 0.96
IPR: 4.30

$3 / 4$ Sphere CR: 1
IPR: 4.05

3/4 Ellipsoid CR: 1
IPR: 4.57

Ruptured vs. Unruptured Aneurysms

θ
Blinded analysis of ruptured and unuptured aneurysms asking which indices reliably predicted ruptured or unruptured state

O Two-tailed Student's t-test: $\mathrm{p}<0.05$
O ROC (Receiver Operating Characteristics) analysis: sensitivity vs. 1-specificity

OMeasure of predictive value - the more deviation from null, the better

ROC Curves for Geometrical Indices

ROC for 3D Geometrical Indices

ROC for 1-D and 2-D Geometrical Indices

- null
- H
\triangle Dmax
$\times \quad \mathrm{Dn}$
- AR
- BF BL

Order of Predictive Capabilities

Order	ROC deviation from null	Index	Type	p value	$p<0.05$
1	0.33	Isoperimetric Ratio	3D, shape	0.002	TRUE
2	0.32	Gaussian Curvature	3D, shape	0.015	TRUE
3	0.31	Convexity Ratio	3D, shape	0.001	TRUE
4	0.30	Mean Curvature	3D, shape	0.007	TRUE
5	0.22	Aspect Ratio	2D, shape	0.018	TRUE
6	0.12	Neck Diameter	1D, size	0.318	FALSE
7	0.11	Bottleneck Factor	2D, shape	0.065	FALSE
8	0.10	Bulge Location	2D, shape	0.517	FALSE
9	0.08	Height	1D, size	0.207	FALSE
10	0.06	Volume	3D, size	0.297	FALSE
11	0.06	Maximum Diameter	1D, size	0.910	FALSE
12	0.02	Surface Area	3D, size	0.274	FALSE

Summary: Geometric Predictors

- Shape indices are better predictors of rupture than size indices

Ө All 3D shape indices show statistically significant differences between the ruptured and unruptured group, while no size indices show significant differences
θ The results by ROC and Student's t-test agree well in finding good predictors of rupture

Part 2: Hemodynamics

Use refined 3D models

Assumptions

Contours of Static Pressure (pascal) (Time=1.6118e+00) $\begin{aligned} & \text { FLUENT } 6.1 \text { (3d, segregated, lam, unsteady) }\end{aligned}$

Pulsatile Flow in the Circle of Willis: Static Pressure

Systolic phase

Contours of Static Pressure (pascal) (Time=1.8205e+00) FLUENT 6.1 (3d, segregated, lam, unsteady)

Diastolic phase

Pulsatile Flow in the Circle of Willis: Shear Stress

Contours of Wall Shear Stress (pascal) (Time=1.7205e+00) Aug 18, 2004 FLUENT 6.1 (3d, segregated, lam, unsteady)

Systolic phase

Contours of Wall Shear Stress (pascal) (Time=1.8205e+00) Aug 18, 2004 FLUEN $\begin{aligned} & \text { Aug 18, } 2004 \\ & 6.1 \text { (3d, segregated, lam, unsteady) }\end{aligned}$

Diastolic phase

Pulsatile Flow in the Circle of Willis: Velocity Vector

Velocity Vectors Colored By Velocity Magnitude (m/s) (Time=1.8205e+00) Aug 19, 2004 Aug 19, 2004
FLUENT 6.1 (3d, segregated, Iam, unsteady)

Diastolic phase

Pulsatile Flow in the Circle of Willis: Pathlines

Systolic phase

Diastolic phase

Pulsatile Hlow in a Basilar Artery Aneurysm

Contours of Static Pressure (pascal) (Time=1.6118e+00)

Static Pressure

Shear Stress

Pulsatile Flow in a Basilar Artery Aneurysm

Velocity Vector

Velocity Magnitude

Pulsatile Flow in a Basilar Artery Aneurysm

Pathlines at maximum velocity

Pulsatile Flow in a Side-Wall Aneurysm

Pulsatile Ilow in a Side-Wall Aneurysm

Static Pressure

Velocity
 Vector

Shear
Stress

Particle Residence Time

- Particle Residence Time was defined as the time interval from first entry into the aneurysm sac until last exiting from it
- Most particles enter the aneurysm sac only once, while some may cross the neck (cutting) plane multiple times

Summary: Hemodynamics

- The 3D flow field in the circle is very complex.

Ө There is little mixing among flow fields supplied by the input arteries.
Θ Pressure is the dominant hemodynamic load on aneurysm - shear stress is no more than 1% of pressure load.

- The maximum shear stress value can be larger than that regarded to cause endothelial damage.
- 3D vortices form inside all aneurysms.
- The velocity vector field varies very little during the cardiac cycle.
θ Average particle residence times inside saccular aneurysms is $<0.2 \mathrm{~s}$.

Aneurysm Wall Thickness

Linking thickness with curvature

Summary of the Project to Date

Θ Combined geometry-biomechanics modeling methodology
θ The geometrical analysis demonstrates that shape is more closely correlated with rupture than size

- NIH RO1 grant supported prospective study at Penn State, University of Iowa, MGH and Jefferson is underway

Thank You For Your Attention

Sunday, August 9, 2009

