Predicting Aneurysm Rupture: Computer Modeling of Geometry and Hemodynamics

Robert E. Harbaugh, MD, FACS, FAHA Director, Penn State Institute of the Neurosciences University Distinguished Professor & Chair, Department of Neurosurgery Professor, Department of Engineering Science & Mechanics Penn State University

Disclosures

- Active Grant Funding Codman, Medtronic, Integra Neuroscience, Integra Foundation, Wyoming Valley Healthcare, Commonwealth of Pennsylvania, NIH - R01-NS049135-01 and R01-HL083475-01A2
- Consultant Micromechatronics, MedCool, Piezo Resonance Innovations, SIO Healthcare Advisors
- Stock Micromechatronics, MedCool, Piezo Resonance Innovations, Cortex
- Fiduciary Responsibility -
 - President, CHYNA, LLC
 - President, NeuroPoint Alliance
- **U.S. Patent Applications** 20060212097 and 20070138915

Acknowledgements

Ma B, Harbaugh RE, Raghavan ML: Three-Dimensional Geometrical Characterization of Cerebral Aneurysms. *Ann Biomed Eng* 32: 264-273, 2004

Ma B, Harbaugh RE, Lu J, Raghavan ML: Modeling the Geometry, Hemodynamics and Tissue Mechanics of Cerebral Aneurysms. *Proc Int Mech Eng Congress.* November 13-19, 2004, Anaheim, CA

Raghavan ML, Ma B, Harbaugh RE: Quantified Aneurysm Shape and Rupture Risk. JNS 102: 355-360, 2005

M. L. Raghavan, PhD

Baoshun Ma, PhD

Jia Lu, PhD

Aneurysm Growth and Rupture: Unanswered Questions

If aneurysms <10 mm rarely rupture, why do clinical series always demonstrate that most ruptured aneurysms are <10mm?

Why did this aneurysm rupture?

And this one didn't?

Predicting Rupture: Geometry

- Presently: size (maximum dimension) is used
 - Is shape also an important factor?
 - Single-lobe vs. multi-lobular
 - Neck-to-height ratio
 - Ratio of neck to maximum diameter
 - Regular vs. irregular

Specific Aims of the Current Project

- Use anatomically realistic 3D geometry
- Geometrical quantification: local and global geometrical features from CTA/MRA/DSA 3-D mesh analysis
- Hemodynamic simulation: Simulation of blood flow in anatomically realistic cerebral vasculature and aneurysms
- Correlate geometry and biomechanics

Study Population

- CTA/MRA/DSA reconstructed human cerebral aneurysms along with the surrounding vasculature
- Analyze ruptured and unruptured aneurysms
- Hypothetical, axisymmetric models used to evaluate and validate the different indices.

Part 1: Quantifying Geometry

Geometry

- Size (objective) and shape (subjective)
- Quantifying geometry: numerical rather than descriptive
- Global size indices: surface area, volume, maximum diameter
- Global shape indices
- Local and global curvature indices

Quantifying Geometry: Overview

- Acquire 3-D digital data from CTA/MRA/DSA
- Develop algorithms for surface mesh refinement
- Isolate the aneurysm sac
- Quantify aneurysm volume and surface area
- Quantify aneurysm curvature
- Quantify other size and shape indices

Mesh Refinement

Isolating the Aneurysm

Final Aneurysm Mesh for Analysis

Convex Hull of Aneurysm

Convex Hull: The smallest encompassing surface that is convex at all points

Convex Hull

Estimation of Principal Curvatures

Hamann, B. (1993). Curvature approximation for triangulated surfaces. in <u>Geometric Modeling</u>. G. F. e. al, Springer-Verlag: 139-153.

Negative, Zero and Positive Gaussian Curves

Mean and Gaussian Curvatures

Initial estimation

Refined 2 times by Contextual Peer Review technique

1 and 2 Dimensional Quantified Geometrical Indices

1-D size indices: Height (H) Maximum Diameter (D_{max}) Neck Diameter (D_n) 2-D shape indices: Aspect Ratio: $AR = H/D_n$ **Bottleneck Factor:** $BF = D_{max} / D_{n}$ Bulge Location: $BL = H_b / H$

3 Dimensional Quantified Geometrical Indices

Size Indices

- Surface Area sum of triangles
- Volume $V = \frac{1}{18} \left| \sum_{\text{all triangles}} (\mathbf{L}_{i12} \times \mathbf{L}_{i13}) \times (\mathbf{X}_{i1} + \mathbf{X}_{i2} + \mathbf{X}_{i3}) \right|$

Shape Indices

Convexity Ratio - CR

$$CR = \frac{V}{V_{CH}}$$

Inversely proportional to irregularity

Proportional to Irregularity

Testing on Hypothetical and Real Aneurysms

Ruptured vs. Unruptured Aneurysms

- Blinded analysis of ruptured and unuptured aneurysms asking which indices reliably predicted ruptured or unruptured state
 - Two-tailed Student's t-test: p < 0.05
 - ROC (Receiver Operating Characteristics) analysis: sensitivity vs. 1-specificity
 - Measure of predictive value the more deviation from null, the better

ROC Curves for Geometrical Indices

Order of Predictive Capabilities

Order	ROC deviation from null	Index	Туре	p value	p < 0.05
1	0.33	Isoperimetric Ratio	3D, shape	0.002	TRUE
2	0.32	Gaussian Curvature	3D, shape	0.015	TRUE
3	0.31	Convexity Ratio	3D, shape	0.001	TRUE
4	0.30	Mean Curvature	3D, shape	0.007	TRUE
5	0.22	Aspect Ratio	2D, shape	0.018	TRUE
6	0.12	Neck Diameter	1D, size	0.318	FALSE
7	0.11	Bottleneck Factor	2D, shape	0.065	FALSE
8	0.10	Bulge Location	2D, shape	0.517	FALSE
9	0.08	Height	1D, size	0.207	FALSE
10	0.06	Volume	3D, size	0.297	FALSE
11	0.06	Maximum Diameter	1D, size	0.910	FALSE
12	0.02	Surface Area	3D, size	0.274	FALSE

Summary: Geometric Predictors

- Shape indices are better predictors of rupture than size indices
- All 3D shape indices show statistically significant differences between the ruptured and unruptured group, while no size indices show significant differences
- The results by ROC and Student's t-test agree well in finding good predictors of rupture

Part 2: Hemodynamics

Use refined 3D models Assumptions Laminar flow Newtonian fluid Ignore gravity

Contours of Static Pressure (pascal) (Time=1,6118e+00) Apr 02, 2004 FLUENT 6.1 (3d, segregated, lam, unsteady)

Pulsatile Flow in the Circle of Willis: Static Pressure

Contours of Static Pressure (pascal) (Time=1.8205e+00) Aug 18, 2004 FLUENT 6.1 (3d, segregated, lam, unsteady)

Diastolic phase

Systolic phase

Pulsatile Flow in the Circle of Willis: Shear Stress

Contours of Wall Shear Stress (pascal) (Time=1.8205e+00) Aug 18, 2004 FLUENT 6.1 (3d, segregated, Iam, unsteady),

Diastolic phase

Systolic phase

Pulsatile Flow in the Circle of Willis: Velocity Vector

Velocity Vectors Colored By Velocity Magnitude (m/s) (Time=1.8205e+00) Aug 19, 2004 FLUENT 6.1 (3d, segregated, lam, unsteady)

Diastolic phase

Systolic phase

Pulsatile Flow in the Circle of Willis: Pathlines

7.64e+02

Path Lines Colored by Particle ID (Time=1.8205e+00) Aug 19, 2004 FLUENT 6.1 (3d, segregated, Iam, unsteady)

Diastolic phase

Systolic phase

Pulsatile Flow in a Basilar Artery Aneurysm

3.00e+01 2.88e+01 2.76e+01 2.64e+01 2.52e+01 2.40e+01 2.28e+01 2.16e+01 2.04e+01 1.92e+01 1.80e+01 1.68e+01 1.56e+01 1.44e+01 1.32e+0 1.20e+0 1.08e+0 9.60e+0 8.40e+0 7.20e+0 6.00e+0 4.80e+00 3.60e+00 2.40e+0 1.20e+0 0.00e+0

Contours of Wall Shear Stress (pascal) (Time=1.6118e+00) Apr 02, 2004 FLUENT 6.1 (3d, segregated, Iam, unsteady)

Static Pressure

Shear Stress

Pulsatile Flow in a Basilar Artery Aneurysm

Velocity Vectors Colored By Velocity Magnitude (m/s) (Time=1.6118e+00) Apr 02, 2004 FLUENT 6.1 (3d, segregated, lam, unsteady)

Velocity Vector

Velocity Magnitude

Pulsatile Flow in a Basilar Artery Aneurysm

Pathlines at maximum velocity

Pulsatile Flow in a Side-Wall Aneurysm

Pathlines at maximum velocity

Pulsatile Flow in a Side-Wall Aneurysm

Static Pressure

Velocity Vector

Shear Stress

Particle Residence Time

- Particle Residence Time was defined as the time interval from first entry into the aneurysm sac until last exiting from it
- Most particles enter the aneurysm sac only once, while some may cross the neck (cutting) plane multiple times

Summary: Hemodynamics

- The 3D flow field in the circle is very complex.
- There is little mixing among flow fields supplied by the input arteries.
- Pressure is the dominant hemodynamic load on aneurysm shear stress is no more than 1% of pressure load.
- The maximum shear stress value can be larger than that regarded to cause endothelial damage.
- 3D vortices form inside all aneurysms.
- The velocity vector field varies very little during the cardiac cycle.
- Average particle residence times inside saccular aneurysms is < 0.2 s.

Aneurysm Wall Thickness

Linking thickness with curvature

Summary of the Project to Date

- Combined geometry-biomechanics modeling methodology
- The geometrical analysis demonstrates that shape is more closely correlated with rupture than size
- NIH RO1 grant supported prospective study at Penn State, University of Iowa, MGH and Jefferson is underway

Thank You For Your Attention

