Unruptured Intracranial Aneurysms: Who and How to Treat

Robert E. Harbaugh, MD, FACS, FAHA Director, Penn State Institute of the Neurosciences University Distinguished Professor and Chair, Department of Neurosurgery Professor, Department of Engineering Science and Mechanics Penn State University

February 8, 2002

Healthy 74 year old woman with long history of headaches MRI revealed right frontal cavernous angioma Angiogram obtained by referring neurologist

February 8, 2002

Healthy 74 year old woman with long history of headaches MRI revealed right frontal cavernous angioma Angiogram obtained by referring neurologist

February 8, 2002

Healthy 74 year old woman with long history of headaches MRI revealed right frontal cavernous angioma Angiogram obtained by referring neurologist

March 4, 2002

Admitted to local hospital with sudden LOC while driving

March 4, 2002

Admitted to local hospital with sudden LOC while driving

MISTAKES

IT COULD BE THAT THE PURPOSE OF YOUR LIFE IS ONLY TO SERVE AS A WARNING TO OTHERS.

Should *This* Patient Be Treated? If So, How?

Factors considered

morbidities
➢ Morbidity and mortality of rupture in *this* patient

>Rupture rate of *this* aneurysm if untreated

> This patient's life expectancy and co-

- Morbidity and mortality of treatment in *this* patient in *my* hands
- Efficacy of treatment in *this* patient in *my* hands

Who to Treat: Aneurysm Size and Risk of Rupture

ISUIA Aneurysms <10 mm rarely rupture

Clinical series Most ruptured aneurysms are <10mm

Who to Treat: Aneurysm Size and Risk of Rupture

ISUIA Aneurysms <10 mm rarely rupture

Clinical series Most ruptured aneurysms are <10mm

ISUIA

Aneurysm Size and Annual Rupture Rates

Aneurysm Size	Group 1 (No SAH)	Group 2 (Previous SAH)
2-6 mm	~0.1% 1/1000/year	~0.5% 1/200/year
7-9 mm	~0.5% 1/200/year	~0.5% 1/200/year
10-24 mm	7% in year #1, then 1%/year	1.0% 1/100/year
25+ mm	17% in year #1, then 2%/year	No data

ISUIA

Aneurysm Size and Risk of Rupture Multivariate Analysis - Combined Cohort

Size vs 2-6 mm	RR	P Value
7-9 mm	2.0	0.073
10-15 mm	5.9	<0.0001
16-24 mm	9.7	< 0.0001
25+ mm	27.6	< 0.0001

ISUIA

Aneurysm Location and Risk of Rupture Multivariate Analysis - Combined Cohort

Site vs ICA	RR	P Value
Cavernous	0.2	0.01
MCA	2.2	0.001
PCoA	3.2	0.001
Vertebrobasilar	2.8	0.02
Basilar Apex	3.9	0.0002

Who to Treat: What We Need

Better predictors of aneurysm rupture

Aneurysm Shape and Risk of Rupture

Is aneurysm shape a predictor of rupture? Can we quantify this variable?

Quantifying Aneurysm Size - Easy

Greatest dimension
 Surface area
 Volume

Quantifying Aneurysm Shape - Hard

- Shape is inherently qualitative and more difficult to quantify
- For use as a predictor of rupture we needed to develop indices that quantify the irregularity of the aneurysm

Please refer to accompanying presentation entitled:

Predicting Aneurysm Rupture: Computer Modeling of Geometry and Hemodynamics for information on aneurysm shape and risk of rupture

How to Treat UIAs: ISUIA Treatment Outcomes

Outcomes at One Year After Treatment

11	Clipping		Coiling	
	Group 1	Group 2	Group 1	Group 2
	N=1591	N=326	N=409	N=42
Death	2.7%	0.6%	3.4%	0
Rankin 3-5 only	1.4%	0.9%	1%	0
Impaired cognition only	5.5%	7.1%	3.2%	7.1%
Both	3.0%	1.5%	2.2%	0
Total	12.6%	10.1%	9.8%	7.1%

How to Treat UIAs: ISUIA Treatment Outcomes

Surgical Risk Factors Diameter >25 mm RR 3.7 Age >50 years RR 2.5 Symptomatic Aneurysm RR 1.8 Posterior Circulation RR 1.6

How to Treat UIAs: ISUIA Treatment Outcomes

Aneurysm Obliteration with Coiling 55% complete 24% partial 18% unobliterated 3% unknown Efficacy?

How to Treat UIAs: ISUIA Conclusions

M&M in surgical patients ~3% higher than in endovascular patients at one year

55% of endovascularly treated aneurysms achieved complete obliteration

Surgical M&M higher in older patients with large and/or posterior circulation aneurysms

Preferred therapy over the life of the patient remains undetermined - particularly for younger patients with anterior circulation aneurysms

How to Treat UIAs

Factors to be considered
 Efficacy of treatments
 Morbidity and mortality of treatments
 Morbidity and mortality of rupture

Decision analysis methodology may be helpful in clarifying our thinking

Decision Analysis Methodology

 Construct a quantified decision tree (Markov Model)

Patient cohort progresses through the model Patients exposed to quantified risks of treatment/ lesion

Patients exposed to actuarial risks

Determines cohort that acquires the most benefit in quality adjusted life years (QALYs)

Assumptions for Our Model

Baseline Case: Clip, Coil or Observation?
➢ Patients start out neurologically well at age 40
➢ Patients are candidates for all treatments

- ▶ Natural history annual rupture rate is 1.46%
- Clipping has 11.2% morbidity/mortality, decreases risk of hemorrhage by 95% and has a disutility of 3 months
- Coiling has 5.6% morbidity/mortality, decreases risk of hemorrhage by 75% and has a disutility of 6 weeks
- > % achieving each GOS score derived from literature
- > Actuarial risks from 1998 U.S. Health Statistics
- Standard discount rate for later years of life

Standard gamble methodology using a medically sophisticated, risk-aversive population From Aoki et al., Med. Dec. Making, 1998

Glasgow Outcome Scale Score	Utility	
1 (Dead)	0	
2 (Vegetative)	0.08	
3 (Severe disability)	0.26	
4 (Moderate disability)	0.63	
5 (Back to work/minor deficit)	0.85	
6A (No deficit/with aneurysm)	0.95	
6B (No deficit/without aneurysm)	1.00	

Markov Model DATA (Decision Analysis by TreeAge) software

One year from entry Observation - 0.93 QALY Coiling - 0.87 QALY Clipping - 0.75 QALY

One year from entry Observation - 0.93 QALY Coiling - 0.87 QALY Clipping - 0.75 QALY

Five years from entry

One year from entry Observation - 0.93 QALY Coiling - 0.87 QALY Clipping - 0.75 QALY Five years from entry Coiling - 4.77 QALY

Five years from entry Coiling - 4.77 QALY Clipping - 4.72 QALY

ne year from entry Observation - 0.93 QALY Coiling - 0.87 QALY Clipping - 0.75 QALY

Five years from entry Coiling - 4.77 QALY Clipping - 4.72 QALY Observation - 4.52 QALY

Observation - 0.93 QALY Coiling - 0.87 QALY Clipping - 0.75 QALY

Results of Decision Analysis

Lifetime
 Clipping - 32.17 QALY
 Coiling - 30.62 QALY
 Observation - 27.75 QALY

Sensitivity Analysis: Duration of Study

What We Need

 Better understanding of the effectiveness and morbidity of endovascular and microsurgical treatments

Long term studies are needed. Short term studies may generate misleading data.

March 19, 2002

Discharged home

Sunday, August 9, 2009

Thank You